* Flask context manager `open()` fix * Additional read context manager fixesmodifyDataloader
@@ -72,7 +72,8 @@ download: | | |||
imgs_path.mkdir(exist_ok=True, parents=True) | |||
lbs_path.mkdir(exist_ok=True, parents=True) | |||
image_ids = open(path / f'VOC{year}/ImageSets/Main/{image_set}.txt').read().strip().split() | |||
with open(path / f'VOC{year}/ImageSets/Main/{image_set}.txt') as f: | |||
image_ids = f.read().strip().split() | |||
for id in tqdm(image_ids, desc=f'{image_set}{year}'): | |||
f = path / f'VOC{year}/JPEGImages/{id}.jpg' # old img path | |||
lb_path = (lbs_path / f.name).with_suffix('.txt') # new label path |
@@ -407,7 +407,8 @@ def export_tfjs(keras_model, im, file, prefix=colorstr('TensorFlow.js:')): | |||
f'--output_node_names="Identity,Identity_1,Identity_2,Identity_3" {f_pb} {f}' | |||
subprocess.run(cmd, shell=True) | |||
json = open(f_json).read() | |||
with open(f_json) as j: | |||
json = j.read() | |||
with open(f_json, 'w') as j: # sort JSON Identity_* in ascending order | |||
subst = re.sub( | |||
r'{"outputs": {"Identity.?.?": {"name": "Identity.?.?"}, ' |
@@ -378,7 +378,8 @@ class DetectMultiBackend(nn.Module): | |||
return x.prune(tf.nest.map_structure(ge, inputs), tf.nest.map_structure(ge, outputs)) | |||
gd = tf.Graph().as_graph_def() # graph_def | |||
gd.ParseFromString(open(w, 'rb').read()) | |||
with open(w, 'rb') as f: | |||
gd.ParseFromString(f.read()) | |||
frozen_func = wrap_frozen_graph(gd, inputs="x:0", outputs="Identity:0") | |||
elif tflite or edgetpu: # https://www.tensorflow.org/lite/guide/python#install_tensorflow_lite_for_python | |||
try: # https://coral.ai/docs/edgetpu/tflite-python/#update-existing-tf-lite-code-for-the-edge-tpu |
@@ -1,12 +1,18 @@ | |||
"""Perform test request""" | |||
# YOLOv5 🚀 by Ultralytics, GPL-3.0 license | |||
""" | |||
Perform test request | |||
""" | |||
import pprint | |||
import requests | |||
DETECTION_URL = "http://localhost:5000/v1/object-detection/yolov5s" | |||
TEST_IMAGE = "zidane.jpg" | |||
IMAGE = "zidane.jpg" | |||
image_data = open(TEST_IMAGE, "rb").read() | |||
# Read image | |||
with open(IMAGE, "rb") as f: | |||
image_data = f.read() | |||
response = requests.post(DETECTION_URL, files={"image": image_data}).json() | |||
@@ -1,6 +1,8 @@ | |||
# YOLOv5 🚀 by Ultralytics, GPL-3.0 license | |||
""" | |||
Run a Flask REST API exposing a YOLOv5s model | |||
""" | |||
import argparse | |||
import io | |||