|
|
@@ -4,9 +4,12 @@ Usage: |
|
|
|
import torch |
|
|
|
model = torch.hub.load('ultralytics/yolov5', 'yolov5s') |
|
|
|
""" |
|
|
|
from pathlib import Path |
|
|
|
|
|
|
|
import torch |
|
|
|
|
|
|
|
FILE = Path(__file__).absolute() |
|
|
|
|
|
|
|
|
|
|
|
def _create(name, pretrained=True, channels=3, classes=80, autoshape=True, verbose=True, device=None): |
|
|
|
"""Creates a specified YOLOv5 model |
|
|
@@ -23,28 +26,26 @@ def _create(name, pretrained=True, channels=3, classes=80, autoshape=True, verbo |
|
|
|
Returns: |
|
|
|
YOLOv5 pytorch model |
|
|
|
""" |
|
|
|
from pathlib import Path |
|
|
|
|
|
|
|
from models.yolo import Model, attempt_load |
|
|
|
from utils.general import check_requirements, set_logging |
|
|
|
from utils.google_utils import attempt_download |
|
|
|
from utils.torch_utils import select_device |
|
|
|
|
|
|
|
check_requirements(requirements=Path(__file__).parent / 'requirements.txt', |
|
|
|
exclude=('tensorboard', 'thop', 'opencv-python')) |
|
|
|
check_requirements(requirements=FILE.parent / 'requirements.txt', exclude=('tensorboard', 'thop', 'opencv-python')) |
|
|
|
set_logging(verbose=verbose) |
|
|
|
|
|
|
|
fname = Path(name).with_suffix('.pt') # checkpoint filename |
|
|
|
save_dir = Path('') if str(name).endswith('.pt') else FILE.parent |
|
|
|
path = (save_dir / name).with_suffix('.pt') # checkpoint path |
|
|
|
try: |
|
|
|
device = select_device(('0' if torch.cuda.is_available() else 'cpu') if device is None else device) |
|
|
|
|
|
|
|
if pretrained and channels == 3 and classes == 80: |
|
|
|
model = attempt_load(fname, map_location=device) # download/load FP32 model |
|
|
|
model = attempt_load(path, map_location=device) # download/load FP32 model |
|
|
|
else: |
|
|
|
cfg = list((Path(__file__).parent / 'models').rglob(f'{name}.yaml'))[0] # model.yaml path |
|
|
|
model = Model(cfg, channels, classes) # create model |
|
|
|
if pretrained: |
|
|
|
ckpt = torch.load(attempt_download(fname), map_location=device) # load |
|
|
|
ckpt = torch.load(attempt_download(path), map_location=device) # load |
|
|
|
msd = model.state_dict() # model state_dict |
|
|
|
csd = ckpt['model'].float().state_dict() # checkpoint state_dict as FP32 |
|
|
|
csd = {k: v for k, v in csd.items() if msd[k].shape == v.shape} # filter |