Procházet zdrojové kódy

Update train, val `tqdm` to fixed width (#5367)

* Update tqdm for fixed width

* Update val.py

* Update val.py

* Try ncols= in train.py

* NCOLS

* NCOLS

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* bar_format

* position 0 leave true

* exp0

* auto

* auto

* Cleanup

* Cleanup

* Cleanup

Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
modifyDataloader
Glenn Jocher GitHub před 3 roky
rodič
revize
61c50199a2
V databázi nebyl nalezen žádný známý klíč pro tento podpis ID GPG klíče: 4AEE18F83AFDEB23
3 změnil soubory, kde provedl 13 přidání a 8 odebrání
  1. +5
    -6
      train.py
  2. +5
    -0
      utils/general.py
  3. +3
    -2
      val.py

+ 5
- 6
train.py Zobrazit soubor

@@ -5,7 +5,6 @@ Train a YOLOv5 model on a custom dataset
Usage:
$ python path/to/train.py --data coco128.yaml --weights yolov5s.pt --img 640
"""

import argparse
import math
import os
@@ -40,10 +39,10 @@ from utils.autobatch import check_train_batch_size
from utils.callbacks import Callbacks
from utils.datasets import create_dataloader
from utils.downloads import attempt_download
from utils.general import (LOGGER, check_dataset, check_file, check_git_status, check_img_size, check_requirements,
check_suffix, check_yaml, colorstr, get_latest_run, increment_path, init_seeds,
intersect_dicts, labels_to_class_weights, labels_to_image_weights, methods, one_cycle,
print_args, print_mutation, strip_optimizer)
from utils.general import (LOGGER, NCOLS, check_dataset, check_file, check_git_status, check_img_size,
check_requirements, check_suffix, check_yaml, colorstr, get_latest_run, increment_path,
init_seeds, intersect_dicts, labels_to_class_weights, labels_to_image_weights, methods,
one_cycle, print_args, print_mutation, strip_optimizer)
from utils.loggers import Loggers
from utils.loggers.wandb.wandb_utils import check_wandb_resume
from utils.loss import ComputeLoss
@@ -289,7 +288,7 @@ def train(hyp, # path/to/hyp.yaml or hyp dictionary
pbar = enumerate(train_loader)
LOGGER.info(('\n' + '%10s' * 7) % ('Epoch', 'gpu_mem', 'box', 'obj', 'cls', 'labels', 'img_size'))
if RANK in [-1, 0]:
pbar = tqdm(pbar, total=nb) # progress bar
pbar = tqdm(pbar, total=nb, ncols=NCOLS, bar_format='{l_bar}{bar:10}{r_bar}{bar:-10b}') # progress bar
optimizer.zero_grad()
for i, (imgs, targets, paths, _) in pbar: # batch -------------------------------------------------------------
ni = i + nb * epoch # number integrated batches (since train start)

+ 5
- 0
utils/general.py Zobrazit soubor

@@ -11,6 +11,7 @@ import os
import platform
import random
import re
import shutil
import signal
import time
import urllib
@@ -834,3 +835,7 @@ def increment_path(path, exist_ok=False, sep='', mkdir=False):
if mkdir:
path.mkdir(parents=True, exist_ok=True) # make directory
return path


# Variables
NCOLS = 0 if is_docker() else shutil.get_terminal_size().columns # terminal window size

+ 3
- 2
val.py Zobrazit soubor

@@ -26,7 +26,7 @@ ROOT = Path(os.path.relpath(ROOT, Path.cwd())) # relative
from models.common import DetectMultiBackend
from utils.callbacks import Callbacks
from utils.datasets import create_dataloader
from utils.general import (LOGGER, box_iou, check_dataset, check_img_size, check_requirements, check_yaml,
from utils.general import (LOGGER, NCOLS, box_iou, check_dataset, check_img_size, check_requirements, check_yaml,
coco80_to_coco91_class, colorstr, increment_path, non_max_suppression, print_args,
scale_coords, xywh2xyxy, xyxy2xywh)
from utils.metrics import ConfusionMatrix, ap_per_class
@@ -162,7 +162,8 @@ def run(data,
dt, p, r, f1, mp, mr, map50, map = [0.0, 0.0, 0.0], 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0
loss = torch.zeros(3, device=device)
jdict, stats, ap, ap_class = [], [], [], []
for batch_i, (im, targets, paths, shapes) in enumerate(tqdm(dataloader, desc=s)):
pbar = tqdm(dataloader, desc=s, ncols=NCOLS, bar_format='{l_bar}{bar:10}{r_bar}{bar:-10b}') # progress bar
for batch_i, (im, targets, paths, shapes) in enumerate(pbar):
t1 = time_sync()
if pt:
im = im.to(device, non_blocking=True)

Načítá se…
Zrušit
Uložit