|
|
@@ -0,0 +1,38 @@ |
|
|
|
"""Exports a pytorch *.pt model to *.torchscript format |
|
|
|
|
|
|
|
Usage: |
|
|
|
$ export PYTHONPATH="$PWD" && python models/torchscript_export.py --weights ./weights/yolov5s.pt --img 640 --batch 1 |
|
|
|
""" |
|
|
|
|
|
|
|
import argparse |
|
|
|
|
|
|
|
|
|
|
|
from models.common import * |
|
|
|
from utils import google_utils |
|
|
|
|
|
|
|
if __name__ == '__main__': |
|
|
|
parser = argparse.ArgumentParser() |
|
|
|
parser.add_argument('--weights', type=str, default='./yolov5s.pt', help='weights path') |
|
|
|
parser.add_argument('--img-size', nargs='+', type=int, default=[640, 640], help='image size') |
|
|
|
parser.add_argument('--batch-size', type=int, default=1, help='batch size') |
|
|
|
opt = parser.parse_args() |
|
|
|
print(opt) |
|
|
|
|
|
|
|
# Parameters |
|
|
|
f = opt.weights.replace('.pt', '.torchscript') # onnx filename |
|
|
|
img = torch.zeros((opt.batch_size, 3, *opt.img_size)) # image size, (1, 3, 320, 192) iDetection |
|
|
|
|
|
|
|
# Load pytorch model |
|
|
|
google_utils.attempt_download(opt.weights) |
|
|
|
model = torch.load(opt.weights, map_location=torch.device('cpu'))['model'].float() |
|
|
|
model.eval() |
|
|
|
|
|
|
|
# Don't fuse layers, it won't work with torchscript exports |
|
|
|
#model.fuse() |
|
|
|
|
|
|
|
# Export to jit/torchscript |
|
|
|
model.model[-1].export = True # set Detect() layer export=True |
|
|
|
_ = model(img) # dry run |
|
|
|
|
|
|
|
traced_script_module = torch.jit.trace(model, img) |
|
|
|
traced_script_module.save(f) |