Browse Source

AutoBatch checks against failed solutions (#8159)

* AutoBatch checks against failed solutions

@kalenmike this is a simple improvement to AutoBatch to verify that returned solutions have not already failed, i.e. return batch-size 8 when 8 already produced CUDA out of memory.

This is a halfway fix until I can implement a 'final solution' that will actively verify the solved-for batch size rather than passively assume it works.

* Update autobatch.py

* Update autobatch.py
modifyDataloader
Glenn Jocher GitHub 2 years ago
parent
commit
6e4661773e
No known key found for this signature in database GPG Key ID: 4AEE18F83AFDEB23
1 changed files with 19 additions and 10 deletions
  1. +19
    -10
      utils/autobatch.py

+ 19
- 10
utils/autobatch.py View File

@@ -8,7 +8,7 @@ from copy import deepcopy
import numpy as np
import torch

from utils.general import LOGGER, colorstr
from utils.general import LOGGER, colorstr, emojis
from utils.torch_utils import profile


@@ -26,6 +26,7 @@ def autobatch(model, imgsz=640, fraction=0.9, batch_size=16):
# model = torch.hub.load('ultralytics/yolov5', 'yolov5s', autoshape=False)
# print(autobatch(model))

# Check device
prefix = colorstr('AutoBatch: ')
LOGGER.info(f'{prefix}Computing optimal batch size for --imgsz {imgsz}')
device = next(model.parameters()).device # get model device
@@ -33,25 +34,33 @@ def autobatch(model, imgsz=640, fraction=0.9, batch_size=16):
LOGGER.info(f'{prefix}CUDA not detected, using default CPU batch-size {batch_size}')
return batch_size

# Inspect CUDA memory
gb = 1 << 30 # bytes to GiB (1024 ** 3)
d = str(device).upper() # 'CUDA:0'
properties = torch.cuda.get_device_properties(device) # device properties
t = properties.total_memory / gb # (GiB)
r = torch.cuda.memory_reserved(device) / gb # (GiB)
a = torch.cuda.memory_allocated(device) / gb # (GiB)
f = t - (r + a) # free inside reserved
t = properties.total_memory / gb # GiB total
r = torch.cuda.memory_reserved(device) / gb # GiB reserved
a = torch.cuda.memory_allocated(device) / gb # GiB allocated
f = t - (r + a) # GiB free
LOGGER.info(f'{prefix}{d} ({properties.name}) {t:.2f}G total, {r:.2f}G reserved, {a:.2f}G allocated, {f:.2f}G free')

# Profile batch sizes
batch_sizes = [1, 2, 4, 8, 16]
try:
img = [torch.zeros(b, 3, imgsz, imgsz) for b in batch_sizes]
y = profile(img, model, n=3, device=device)
results = profile(img, model, n=3, device=device)
except Exception as e:
LOGGER.warning(f'{prefix}{e}')

y = [x[2] for x in y if x] # memory [2]
batch_sizes = batch_sizes[:len(y)]
p = np.polyfit(batch_sizes, y, deg=1) # first degree polynomial fit
# Fit a solution
y = [x[2] for x in results if x] # memory [2]
p = np.polyfit(batch_sizes[:len(y)], y, deg=1) # first degree polynomial fit
b = int((f * fraction - p[1]) / p[0]) # y intercept (optimal batch size)
LOGGER.info(f'{prefix}Using batch-size {b} for {d} {t * fraction:.2f}G/{t:.2f}G ({fraction * 100:.0f}%)')
if None in results: # some sizes failed
i = results.index(None) # first fail index
if b >= batch_sizes[i]: # y intercept above failure point
b = batch_sizes[max(i - 1, 0)] # select prior safe point

fraction = np.polyval(p, b) / t # actual fraction predicted
LOGGER.info(emojis(f'{prefix}Using batch-size {b} for {d} {t * fraction:.2f}G/{t:.2f}G ({fraction * 100:.0f}%) ✅'))
return b

Loading…
Cancel
Save