|
|
@@ -8,7 +8,7 @@ from copy import deepcopy |
|
|
|
import numpy as np |
|
|
|
import torch |
|
|
|
|
|
|
|
from utils.general import LOGGER, colorstr |
|
|
|
from utils.general import LOGGER, colorstr, emojis |
|
|
|
from utils.torch_utils import profile |
|
|
|
|
|
|
|
|
|
|
@@ -26,6 +26,7 @@ def autobatch(model, imgsz=640, fraction=0.9, batch_size=16): |
|
|
|
# model = torch.hub.load('ultralytics/yolov5', 'yolov5s', autoshape=False) |
|
|
|
# print(autobatch(model)) |
|
|
|
|
|
|
|
# Check device |
|
|
|
prefix = colorstr('AutoBatch: ') |
|
|
|
LOGGER.info(f'{prefix}Computing optimal batch size for --imgsz {imgsz}') |
|
|
|
device = next(model.parameters()).device # get model device |
|
|
@@ -33,25 +34,33 @@ def autobatch(model, imgsz=640, fraction=0.9, batch_size=16): |
|
|
|
LOGGER.info(f'{prefix}CUDA not detected, using default CPU batch-size {batch_size}') |
|
|
|
return batch_size |
|
|
|
|
|
|
|
# Inspect CUDA memory |
|
|
|
gb = 1 << 30 # bytes to GiB (1024 ** 3) |
|
|
|
d = str(device).upper() # 'CUDA:0' |
|
|
|
properties = torch.cuda.get_device_properties(device) # device properties |
|
|
|
t = properties.total_memory / gb # (GiB) |
|
|
|
r = torch.cuda.memory_reserved(device) / gb # (GiB) |
|
|
|
a = torch.cuda.memory_allocated(device) / gb # (GiB) |
|
|
|
f = t - (r + a) # free inside reserved |
|
|
|
t = properties.total_memory / gb # GiB total |
|
|
|
r = torch.cuda.memory_reserved(device) / gb # GiB reserved |
|
|
|
a = torch.cuda.memory_allocated(device) / gb # GiB allocated |
|
|
|
f = t - (r + a) # GiB free |
|
|
|
LOGGER.info(f'{prefix}{d} ({properties.name}) {t:.2f}G total, {r:.2f}G reserved, {a:.2f}G allocated, {f:.2f}G free') |
|
|
|
|
|
|
|
# Profile batch sizes |
|
|
|
batch_sizes = [1, 2, 4, 8, 16] |
|
|
|
try: |
|
|
|
img = [torch.zeros(b, 3, imgsz, imgsz) for b in batch_sizes] |
|
|
|
y = profile(img, model, n=3, device=device) |
|
|
|
results = profile(img, model, n=3, device=device) |
|
|
|
except Exception as e: |
|
|
|
LOGGER.warning(f'{prefix}{e}') |
|
|
|
|
|
|
|
y = [x[2] for x in y if x] # memory [2] |
|
|
|
batch_sizes = batch_sizes[:len(y)] |
|
|
|
p = np.polyfit(batch_sizes, y, deg=1) # first degree polynomial fit |
|
|
|
# Fit a solution |
|
|
|
y = [x[2] for x in results if x] # memory [2] |
|
|
|
p = np.polyfit(batch_sizes[:len(y)], y, deg=1) # first degree polynomial fit |
|
|
|
b = int((f * fraction - p[1]) / p[0]) # y intercept (optimal batch size) |
|
|
|
LOGGER.info(f'{prefix}Using batch-size {b} for {d} {t * fraction:.2f}G/{t:.2f}G ({fraction * 100:.0f}%)') |
|
|
|
if None in results: # some sizes failed |
|
|
|
i = results.index(None) # first fail index |
|
|
|
if b >= batch_sizes[i]: # y intercept above failure point |
|
|
|
b = batch_sizes[max(i - 1, 0)] # select prior safe point |
|
|
|
|
|
|
|
fraction = np.polyval(p, b) / t # actual fraction predicted |
|
|
|
LOGGER.info(emojis(f'{prefix}Using batch-size {b} for {d} {t * fraction:.2f}G/{t:.2f}G ({fraction * 100:.0f}%) ✅')) |
|
|
|
return b |