@@ -12,7 +12,7 @@ Before submitting a bug report, please be aware that your issue **must be reprod | |||
- **Common dataset**: coco.yaml or coco128.yaml | |||
- **Common environment**: Colab, Google Cloud, or Docker image. See https://github.com/ultralytics/yolov5#environments | |||
If this is a custom dataset/training question you **must include** your `train*.jpg`, `test*.jpg` and `results.png` figures, or we can not help you. You can generate these with `utils.plot_results()`. | |||
If this is a custom dataset/training question you **must include** your `train*.jpg`, `val*.jpg` and `results.png` figures, or we can not help you. You can generate these with `utils.plot_results()`. | |||
## 🐛 Bug |
@@ -68,9 +68,9 @@ jobs: | |||
# detect | |||
python detect.py --weights ${{ matrix.model }}.pt --device $di | |||
python detect.py --weights runs/train/exp/weights/last.pt --device $di | |||
# test | |||
python test.py --img 128 --batch 16 --weights ${{ matrix.model }}.pt --device $di | |||
python test.py --img 128 --batch 16 --weights runs/train/exp/weights/last.pt --device $di | |||
# val | |||
python val.py --img 128 --batch 16 --weights ${{ matrix.model }}.pt --device $di | |||
python val.py --img 128 --batch 16 --weights runs/train/exp/weights/last.pt --device $di | |||
python hubconf.py # hub | |||
python models/yolo.py --cfg ${{ matrix.model }}.yaml # inspect |
@@ -52,5 +52,5 @@ jobs: | |||
![CI CPU testing](https://github.com/ultralytics/yolov5/workflows/CI%20CPU%20testing/badge.svg) | |||
If this badge is green, all [YOLOv5 GitHub Actions](https://github.com/ultralytics/yolov5/actions) Continuous Integration (CI) tests are currently passing. CI tests verify correct operation of YOLOv5 training ([train.py](https://github.com/ultralytics/yolov5/blob/master/train.py)), testing ([test.py](https://github.com/ultralytics/yolov5/blob/master/test.py)), inference ([detect.py](https://github.com/ultralytics/yolov5/blob/master/detect.py)) and export ([export.py](https://github.com/ultralytics/yolov5/blob/master/export.py)) on MacOS, Windows, and Ubuntu every 24 hours and on every commit. | |||
If this badge is green, all [YOLOv5 GitHub Actions](https://github.com/ultralytics/yolov5/actions) Continuous Integration (CI) tests are currently passing. CI tests verify correct operation of YOLOv5 training ([train.py](https://github.com/ultralytics/yolov5/blob/master/train.py)), testing ([val.py](https://github.com/ultralytics/yolov5/blob/master/val.py)), inference ([detect.py](https://github.com/ultralytics/yolov5/blob/master/detect.py)) and export ([export.py](https://github.com/ultralytics/yolov5/blob/master/export.py)) on MacOS, Windows, and Ubuntu every 24 hours and on every commit. | |||
@@ -197,7 +197,7 @@ We are super excited about our first-ever Ultralytics YOLOv5 🚀 EXPORT Competi | |||
* GPU Speed measures end-to-end time per image averaged over 5000 COCO val2017 images using a V100 GPU with batch size 32, and includes image preprocessing, PyTorch FP16 inference, postprocessing and NMS. | |||
* EfficientDet data from [google/automl](https://github.com/google/automl) at batch size 8. | |||
* **Reproduce** by `python test.py --task study --data coco.yaml --iou 0.7 --weights yolov5s6.pt yolov5m6.pt yolov5l6.pt yolov5x6.pt` | |||
* **Reproduce** by `python val.py --task study --data coco.yaml --iou 0.7 --weights yolov5s6.pt yolov5m6.pt yolov5l6.pt yolov5x6.pt` | |||
</details> | |||
@@ -223,10 +223,10 @@ We are super excited about our first-ever Ultralytics YOLOv5 🚀 EXPORT Competi | |||
<summary>Table Notes (click to expand)</summary> | |||
* AP<sup>test</sup> denotes COCO [test-dev2017](http://cocodataset.org/#upload) server results, all other AP results denote val2017 accuracy. | |||
* AP values are for single-model single-scale unless otherwise noted. **Reproduce mAP** by `python test.py --data coco.yaml --img 640 --conf 0.001 --iou 0.65` | |||
* Speed<sub>GPU</sub> averaged over 5000 COCO val2017 images using a GCP [n1-standard-16](https://cloud.google.com/compute/docs/machine-types#n1_standard_machine_types) V100 instance, and includes FP16 inference, postprocessing and NMS. **Reproduce speed** by `python test.py --data coco.yaml --img 640 --conf 0.25 --iou 0.45` | |||
* AP values are for single-model single-scale unless otherwise noted. **Reproduce mAP** by `python val.py --data coco.yaml --img 640 --conf 0.001 --iou 0.65` | |||
* Speed<sub>GPU</sub> averaged over 5000 COCO val2017 images using a GCP [n1-standard-16](https://cloud.google.com/compute/docs/machine-types#n1_standard_machine_types) V100 instance, and includes FP16 inference, postprocessing and NMS. **Reproduce speed** by `python val.py --data coco.yaml --img 640 --conf 0.25 --iou 0.45` | |||
* All checkpoints are trained to 300 epochs with default settings and hyperparameters (no autoaugmentation). | |||
* Test Time Augmentation ([TTA](https://github.com/ultralytics/yolov5/issues/303)) includes reflection and scale augmentation. **Reproduce TTA** by `python test.py --data coco.yaml --img 1536 --iou 0.7 --augment` | |||
* Test Time Augmentation ([TTA](https://github.com/ultralytics/yolov5/issues/303)) includes reflection and scale augmentation. **Reproduce TTA** by `python val.py --data coco.yaml --img 1536 --iou 0.7 --augment` | |||
</details> | |||
@@ -310,4 +310,3 @@ if __name__ == '__main__': | |||
# tb_writer = SummaryWriter('.') | |||
# logger.info("Run 'tensorboard --logdir=models' to view tensorboard at http://localhost:6006/") | |||
# tb_writer.add_graph(torch.jit.trace(model, img, strict=False), []) # add model graph | |||
# tb_writer.add_image('test', img[0], dataformats='CWH') # add model to tensorboard |
@@ -32,7 +32,7 @@ from tqdm import tqdm | |||
FILE = Path(__file__).absolute() | |||
sys.path.append(FILE.parents[0].as_posix()) # add yolov5/ to path | |||
import test # for end-of-epoch mAP | |||
import val # for end-of-epoch mAP | |||
from models.experimental import attempt_load | |||
from models.yolo import Model | |||
from utils.autoanchor import check_anchors | |||
@@ -57,9 +57,9 @@ def train(hyp, # path/to/hyp.yaml or hyp dictionary | |||
opt, | |||
device, | |||
): | |||
save_dir, epochs, batch_size, weights, single_cls, evolve, data, cfg, resume, notest, nosave, workers, = \ | |||
save_dir, epochs, batch_size, weights, single_cls, evolve, data, cfg, resume, noval, nosave, workers, = \ | |||
opt.save_dir, opt.epochs, opt.batch_size, opt.weights, opt.single_cls, opt.evolve, opt.data, opt.cfg, \ | |||
opt.resume, opt.notest, opt.nosave, opt.workers | |||
opt.resume, opt.noval, opt.nosave, opt.workers | |||
# Directories | |||
save_dir = Path(save_dir) | |||
@@ -129,7 +129,7 @@ def train(hyp, # path/to/hyp.yaml or hyp dictionary | |||
with torch_distributed_zero_first(RANK): | |||
check_dataset(data_dict) # check | |||
train_path = data_dict['train'] | |||
test_path = data_dict['val'] | |||
val_path = data_dict['val'] | |||
# Freeze | |||
freeze = [] # parameter names to freeze (full or partial) | |||
@@ -207,7 +207,7 @@ def train(hyp, # path/to/hyp.yaml or hyp dictionary | |||
# Image sizes | |||
gs = max(int(model.stride.max()), 32) # grid size (max stride) | |||
nl = model.model[-1].nl # number of detection layers (used for scaling hyp['obj']) | |||
imgsz, imgsz_test = [check_img_size(x, gs) for x in opt.img_size] # verify imgsz are gs-multiples | |||
imgsz, imgsz_val = [check_img_size(x, gs) for x in opt.img_size] # verify imgsz are gs-multiples | |||
# DP mode | |||
if cuda and RANK == -1 and torch.cuda.device_count() > 1: | |||
@@ -231,8 +231,8 @@ def train(hyp, # path/to/hyp.yaml or hyp dictionary | |||
# Process 0 | |||
if RANK in [-1, 0]: | |||
testloader = create_dataloader(test_path, imgsz_test, batch_size // WORLD_SIZE * 2, gs, single_cls, | |||
hyp=hyp, cache=opt.cache_images and not notest, rect=True, rank=-1, | |||
valloader = create_dataloader(val_path, imgsz_val, batch_size // WORLD_SIZE * 2, gs, single_cls, | |||
hyp=hyp, cache=opt.cache_images and not noval, rect=True, rank=-1, | |||
workers=workers, | |||
pad=0.5, prefix=colorstr('val: '))[0] | |||
@@ -276,7 +276,7 @@ def train(hyp, # path/to/hyp.yaml or hyp dictionary | |||
scheduler.last_epoch = start_epoch - 1 # do not move | |||
scaler = amp.GradScaler(enabled=cuda) | |||
compute_loss = ComputeLoss(model) # init loss class | |||
logger.info(f'Image sizes {imgsz} train, {imgsz_test} test\n' | |||
logger.info(f'Image sizes {imgsz} train, {imgsz_val} val\n' | |||
f'Using {dataloader.num_workers} dataloader workers\n' | |||
f'Logging results to {save_dir}\n' | |||
f'Starting training for {epochs} epochs...') | |||
@@ -384,20 +384,20 @@ def train(hyp, # path/to/hyp.yaml or hyp dictionary | |||
# mAP | |||
ema.update_attr(model, include=['yaml', 'nc', 'hyp', 'gr', 'names', 'stride', 'class_weights']) | |||
final_epoch = epoch + 1 == epochs | |||
if not notest or final_epoch: # Calculate mAP | |||
if not noval or final_epoch: # Calculate mAP | |||
wandb_logger.current_epoch = epoch + 1 | |||
results, maps, _ = test.run(data_dict, | |||
batch_size=batch_size // WORLD_SIZE * 2, | |||
imgsz=imgsz_test, | |||
model=ema.ema, | |||
single_cls=single_cls, | |||
dataloader=testloader, | |||
save_dir=save_dir, | |||
save_json=is_coco and final_epoch, | |||
verbose=nc < 50 and final_epoch, | |||
plots=plots and final_epoch, | |||
wandb_logger=wandb_logger, | |||
compute_loss=compute_loss) | |||
results, maps, _ = val.run(data_dict, | |||
batch_size=batch_size // WORLD_SIZE * 2, | |||
imgsz=imgsz_val, | |||
model=ema.ema, | |||
single_cls=single_cls, | |||
dataloader=valloader, | |||
save_dir=save_dir, | |||
save_json=is_coco and final_epoch, | |||
verbose=nc < 50 and final_epoch, | |||
plots=plots and final_epoch, | |||
wandb_logger=wandb_logger, | |||
compute_loss=compute_loss) | |||
# Write | |||
with open(results_file, 'a') as f: | |||
@@ -454,15 +454,15 @@ def train(hyp, # path/to/hyp.yaml or hyp dictionary | |||
if not evolve: | |||
if is_coco: # COCO dataset | |||
for m in [last, best] if best.exists() else [last]: # speed, mAP tests | |||
results, _, _ = test.run(data_dict, | |||
batch_size=batch_size // WORLD_SIZE * 2, | |||
imgsz=imgsz_test, | |||
model=attempt_load(m, device).half(), | |||
single_cls=single_cls, | |||
dataloader=testloader, | |||
save_dir=save_dir, | |||
save_json=True, | |||
plots=False) | |||
results, _, _ = val.run(data_dict, | |||
batch_size=batch_size // WORLD_SIZE * 2, | |||
imgsz=imgsz_val, | |||
model=attempt_load(m, device).half(), | |||
single_cls=single_cls, | |||
dataloader=valloader, | |||
save_dir=save_dir, | |||
save_json=True, | |||
plots=False) | |||
# Strip optimizers | |||
for f in last, best: | |||
@@ -486,11 +486,11 @@ def parse_opt(known=False): | |||
parser.add_argument('--hyp', type=str, default='data/hyps/hyp.scratch.yaml', help='hyperparameters path') | |||
parser.add_argument('--epochs', type=int, default=300) | |||
parser.add_argument('--batch-size', type=int, default=16, help='total batch size for all GPUs') | |||
parser.add_argument('--img-size', nargs='+', type=int, default=[640, 640], help='[train, test] image sizes') | |||
parser.add_argument('--img-size', nargs='+', type=int, default=[640, 640], help='[train, val] image sizes') | |||
parser.add_argument('--rect', action='store_true', help='rectangular training') | |||
parser.add_argument('--resume', nargs='?', const=True, default=False, help='resume most recent training') | |||
parser.add_argument('--nosave', action='store_true', help='only save final checkpoint') | |||
parser.add_argument('--notest', action='store_true', help='only test final epoch') | |||
parser.add_argument('--noval', action='store_true', help='only validate final epoch') | |||
parser.add_argument('--noautoanchor', action='store_true', help='disable autoanchor check') | |||
parser.add_argument('--evolve', type=int, nargs='?', const=300, help='evolve hyperparameters for x generations') | |||
parser.add_argument('--bucket', type=str, default='', help='gsutil bucket') | |||
@@ -538,7 +538,7 @@ def main(opt): | |||
# opt.hyp = opt.hyp or ('hyp.finetune.yaml' if opt.weights else 'hyp.scratch.yaml') | |||
opt.data, opt.cfg, opt.hyp = check_file(opt.data), check_file(opt.cfg), check_file(opt.hyp) # check files | |||
assert len(opt.cfg) or len(opt.weights), 'either --cfg or --weights must be specified' | |||
opt.img_size.extend([opt.img_size[-1]] * (2 - len(opt.img_size))) # extend to 2 sizes (train, test) | |||
opt.img_size.extend([opt.img_size[-1]] * (2 - len(opt.img_size))) # extend to 2 sizes (train, val) | |||
opt.name = 'evolve' if opt.evolve else opt.name | |||
opt.save_dir = str(increment_path(Path(opt.project) / opt.name, exist_ok=opt.exist_ok or opt.evolve)) | |||
@@ -597,7 +597,7 @@ def main(opt): | |||
if 'anchors' not in hyp: # anchors commented in hyp.yaml | |||
hyp['anchors'] = 3 | |||
assert LOCAL_RANK == -1, 'DDP mode not implemented for --evolve' | |||
opt.notest, opt.nosave = True, True # only test/save final epoch | |||
opt.noval, opt.nosave = True, True # only val/save final epoch | |||
# ei = [isinstance(x, (int, float)) for x in hyp.values()] # evolvable indices | |||
yaml_file = Path(opt.save_dir) / 'hyp_evolved.yaml' # save best result here | |||
if opt.bucket: |
@@ -643,8 +643,8 @@ | |||
"id": "0eq1SMWl6Sfn" | |||
}, | |||
"source": [ | |||
"# 2. Test\n", | |||
"Test a model's accuracy on [COCO](https://cocodataset.org/#home) val or test-dev datasets. Models are downloaded automatically from the [latest YOLOv5 release](https://github.com/ultralytics/yolov5/releases). To show results by class use the `--verbose` flag. Note that `pycocotools` metrics may be ~1% better than the equivalent repo metrics, as is visible below, due to slight differences in mAP computation." | |||
"# 2. Validate\n", | |||
"Validate a model's accuracy on [COCO](https://cocodataset.org/#home) val or test-dev datasets. Models are downloaded automatically from the [latest YOLOv5 release](https://github.com/ultralytics/yolov5/releases). To show results by class use the `--verbose` flag. Note that `pycocotools` metrics may be ~1% better than the equivalent repo metrics, as is visible below, due to slight differences in mAP computation." | |||
] | |||
}, | |||
{ | |||
@@ -720,14 +720,14 @@ | |||
}, | |||
"source": [ | |||
"# Run YOLOv5x on COCO val2017\n", | |||
"!python test.py --weights yolov5x.pt --data coco.yaml --img 640 --iou 0.65 --half" | |||
"!python val.py --weights yolov5x.pt --data coco.yaml --img 640 --iou 0.65 --half" | |||
], | |||
"execution_count": null, | |||
"outputs": [ | |||
{ | |||
"output_type": "stream", | |||
"text": [ | |||
"Namespace(augment=False, batch_size=32, conf_thres=0.001, data='./data/coco.yaml', device='', exist_ok=False, half=True, img_size=640, iou_thres=0.65, name='exp', project='runs/test', save_conf=False, save_hybrid=False, save_json=True, save_txt=False, single_cls=False, task='val', verbose=False, weights=['yolov5x.pt'])\n", | |||
"Namespace(augment=False, batch_size=32, conf_thres=0.001, data='./data/coco.yaml', device='', exist_ok=False, half=True, img_size=640, iou_thres=0.65, name='exp', project='runs/val', save_conf=False, save_hybrid=False, save_json=True, save_txt=False, single_cls=False, task='val', verbose=False, weights=['yolov5x.pt'])\n", | |||
"YOLOv5 🚀 v5.0-157-gc6b51f4 torch 1.8.1+cu101 CUDA:0 (Tesla V100-SXM2-16GB, 16160.5MB)\n", | |||
"\n", | |||
"Downloading https://github.com/ultralytics/yolov5/releases/download/v5.0/yolov5x.pt to yolov5x.pt...\n", | |||
@@ -741,7 +741,7 @@ | |||
" all 5000 36335 0.746 0.626 0.68 0.49\n", | |||
"Speed: 5.3/1.5/6.8 ms inference/NMS/total per 640x640 image at batch-size 32\n", | |||
"\n", | |||
"Evaluating pycocotools mAP... saving runs/test/exp/yolov5x_predictions.json...\n", | |||
"Evaluating pycocotools mAP... saving runs/val/exp/yolov5x_predictions.json...\n", | |||
"loading annotations into memory...\n", | |||
"Done (t=0.44s)\n", | |||
"creating index...\n", | |||
@@ -767,7 +767,7 @@ | |||
" Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.524\n", | |||
" Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.735\n", | |||
" Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.827\n", | |||
"Results saved to runs/test/exp\n" | |||
"Results saved to runs/val/exp\n" | |||
], | |||
"name": "stdout" | |||
} | |||
@@ -805,7 +805,7 @@ | |||
}, | |||
"source": [ | |||
"# Run YOLOv5s on COCO test-dev2017 using --task test\n", | |||
"!python test.py --weights yolov5s.pt --data coco.yaml --task test" | |||
"!python val.py --weights yolov5s.pt --data coco.yaml --task test" | |||
], | |||
"execution_count": null, | |||
"outputs": [] | |||
@@ -976,7 +976,7 @@ | |||
"Plotting labels... \n", | |||
"\n", | |||
"\u001b[34m\u001b[1mautoanchor: \u001b[0mAnalyzing anchors... anchors/target = 4.26, Best Possible Recall (BPR) = 0.9946\n", | |||
"Image sizes 640 train, 640 test\n", | |||
"Image sizes 640 train, 640 val\n", | |||
"Using 2 dataloader workers\n", | |||
"Logging results to runs/train/exp\n", | |||
"Starting training for 3 epochs...\n", | |||
@@ -1036,7 +1036,7 @@ | |||
"source": [ | |||
"## Local Logging\n", | |||
"\n", | |||
"All results are logged by default to `runs/train`, with a new experiment directory created for each new training as `runs/train/exp2`, `runs/train/exp3`, etc. View train and test jpgs to see mosaics, labels, predictions and augmentation effects. Note a **Mosaic Dataloader** is used for training (shown below), a new concept developed by Ultralytics and first featured in [YOLOv4](https://arxiv.org/abs/2004.10934)." | |||
"All results are logged by default to `runs/train`, with a new experiment directory created for each new training as `runs/train/exp2`, `runs/train/exp3`, etc. View train and val jpgs to see mosaics, labels, predictions and augmentation effects. Note a **Mosaic Dataloader** is used for training (shown below), a new concept developed by Ultralytics and first featured in [YOLOv4](https://arxiv.org/abs/2004.10934)." | |||
] | |||
}, | |||
{ | |||
@@ -1046,8 +1046,8 @@ | |||
}, | |||
"source": [ | |||
"Image(filename='runs/train/exp/train_batch0.jpg', width=800) # train batch 0 mosaics and labels\n", | |||
"Image(filename='runs/train/exp/test_batch0_labels.jpg', width=800) # test batch 0 labels\n", | |||
"Image(filename='runs/train/exp/test_batch0_pred.jpg', width=800) # test batch 0 predictions" | |||
"Image(filename='runs/train/exp/test_batch0_labels.jpg', width=800) # val batch 0 labels\n", | |||
"Image(filename='runs/train/exp/test_batch0_pred.jpg', width=800) # val batch 0 predictions" | |||
], | |||
"execution_count": null, | |||
"outputs": [] | |||
@@ -1062,10 +1062,10 @@ | |||
"`train_batch0.jpg` shows train batch 0 mosaics and labels\n", | |||
"\n", | |||
"> <img src=\"https://user-images.githubusercontent.com/26833433/124931217-4826f080-e002-11eb-87b9-ae0925a8c94b.jpg\" width=\"700\"> \n", | |||
"`test_batch0_labels.jpg` shows test batch 0 labels\n", | |||
"`test_batch0_labels.jpg` shows val batch 0 labels\n", | |||
"\n", | |||
"> <img src=\"https://user-images.githubusercontent.com/26833433/124931209-46f5c380-e002-11eb-9bd5-7a3de2be9851.jpg\" width=\"700\"> \n", | |||
"`test_batch0_pred.jpg` shows test batch 0 _predictions_" | |||
"`test_batch0_pred.jpg` shows val batch 0 _predictions_" | |||
] | |||
}, | |||
{ | |||
@@ -1125,7 +1125,7 @@ | |||
"\n", | |||
"![CI CPU testing](https://github.com/ultralytics/yolov5/workflows/CI%20CPU%20testing/badge.svg)\n", | |||
"\n", | |||
"If this badge is green, all [YOLOv5 GitHub Actions](https://github.com/ultralytics/yolov5/actions) Continuous Integration (CI) tests are currently passing. CI tests verify correct operation of YOLOv5 training ([train.py](https://github.com/ultralytics/yolov5/blob/master/train.py)), testing ([test.py](https://github.com/ultralytics/yolov5/blob/master/test.py)), inference ([detect.py](https://github.com/ultralytics/yolov5/blob/master/detect.py)) and export ([export.py](https://github.com/ultralytics/yolov5/blob/master/export.py)) on MacOS, Windows, and Ubuntu every 24 hours and on every commit.\n" | |||
"If this badge is green, all [YOLOv5 GitHub Actions](https://github.com/ultralytics/yolov5/actions) Continuous Integration (CI) tests are currently passing. CI tests verify correct operation of YOLOv5 training ([train.py](https://github.com/ultralytics/yolov5/blob/master/train.py)), testing ([val.py](https://github.com/ultralytics/yolov5/blob/master/val.py)), inference ([detect.py](https://github.com/ultralytics/yolov5/blob/master/detect.py)) and export ([export.py](https://github.com/ultralytics/yolov5/blob/master/export.py)) on MacOS, Windows, and Ubuntu every 24 hours and on every commit.\n" | |||
] | |||
}, | |||
{ | |||
@@ -1147,8 +1147,8 @@ | |||
"source": [ | |||
"# Reproduce\n", | |||
"for x in 'yolov5s', 'yolov5m', 'yolov5l', 'yolov5x':\n", | |||
" !python test.py --weights {x}.pt --data coco.yaml --img 640 --conf 0.25 --iou 0.45 # speed\n", | |||
" !python test.py --weights {x}.pt --data coco.yaml --img 640 --conf 0.001 --iou 0.65 # mAP" | |||
" !python val.py --weights {x}.pt --data coco.yaml --img 640 --conf 0.25 --iou 0.45 # speed\n", | |||
" !python val.py --weights {x}.pt --data coco.yaml --img 640 --conf 0.001 --iou 0.65 # mAP" | |||
], | |||
"execution_count": null, | |||
"outputs": [] | |||
@@ -1193,8 +1193,8 @@ | |||
" for d in 0 cpu; do # devices\n", | |||
" python detect.py --weights $m.pt --device $d # detect official\n", | |||
" python detect.py --weights runs/train/exp/weights/best.pt --device $d # detect custom\n", | |||
" python test.py --weights $m.pt --device $d # test official\n", | |||
" python test.py --weights runs/train/exp/weights/best.pt --device $d # test custom\n", | |||
" python val.py --weights $m.pt --device $d # val official\n", | |||
" python val.py --weights runs/train/exp/weights/best.pt --device $d # val custom\n", | |||
" done\n", | |||
" python hubconf.py # hub\n", | |||
" python models/yolo.py --cfg $m.yaml # inspect\n", |
@@ -90,7 +90,7 @@ def letterbox(im, new_shape=(640, 640), color=(114, 114, 114), auto=True, scaleF | |||
# Scale ratio (new / old) | |||
r = min(new_shape[0] / shape[0], new_shape[1] / shape[1]) | |||
if not scaleup: # only scale down, do not scale up (for better test mAP) | |||
if not scaleup: # only scale down, do not scale up (for better val mAP) | |||
r = min(r, 1.0) | |||
# Compute padding |
@@ -633,7 +633,7 @@ def apply_classifier(x, model, img, im0): | |||
for j, a in enumerate(d): # per item | |||
cutout = im0[i][int(a[1]):int(a[3]), int(a[0]):int(a[2])] | |||
im = cv2.resize(cutout, (224, 224)) # BGR | |||
# cv2.imwrite('test%i.jpg' % j, cutout) | |||
# cv2.imwrite('example%i.jpg' % j, cutout) | |||
im = im[:, :, ::-1].transpose(2, 0, 1) # BGR to RGB, to 3x416x416 | |||
im = np.ascontiguousarray(im, dtype=np.float32) # uint8 to float32 |
@@ -219,9 +219,9 @@ def plot_lr_scheduler(optimizer, scheduler, epochs=300, save_dir=''): | |||
plt.close() | |||
def plot_test_txt(): # from utils.plots import *; plot_test() | |||
# Plot test.txt histograms | |||
x = np.loadtxt('test.txt', dtype=np.float32) | |||
def plot_val_txt(): # from utils.plots import *; plot_val() | |||
# Plot val.txt histograms | |||
x = np.loadtxt('val.txt', dtype=np.float32) | |||
box = xyxy2xywh(x[:, :4]) | |||
cx, cy = box[:, 0], box[:, 1] | |||
@@ -250,7 +250,7 @@ def plot_targets_txt(): # from utils.plots import *; plot_targets_txt() | |||
def plot_study_txt(path='', x=None): # from utils.plots import *; plot_study_txt() | |||
# Plot study.txt generated by test.py | |||
# Plot study.txt generated by val.py | |||
plot2 = False # plot additional results | |||
if plot2: | |||
ax = plt.subplots(2, 4, figsize=(10, 6), tight_layout=True)[1].ravel() |
@@ -1,7 +1,7 @@ | |||
"""Test a trained YOLOv5 model accuracy on a custom dataset | |||
"""Validate a trained YOLOv5 model accuracy on a custom dataset | |||
Usage: | |||
$ python path/to/test.py --data coco128.yaml --weights yolov5s.pt --img 640 | |||
$ python path/to/val.py --data coco128.yaml --weights yolov5s.pt --img 640 | |||
""" | |||
import argparse | |||
@@ -44,7 +44,7 @@ def run(data, | |||
save_hybrid=False, # save label+prediction hybrid results to *.txt | |||
save_conf=False, # save confidences in --save-txt labels | |||
save_json=False, # save a cocoapi-compatible JSON results file | |||
project='runs/test', # save to project/name | |||
project='runs/val', # save to project/name | |||
name='exp', # save to project/name | |||
exist_ok=False, # existing project/name ok, do not increment | |||
half=True, # use FP16 half-precision inference | |||
@@ -228,9 +228,9 @@ def run(data, | |||
# Plot images | |||
if plots and batch_i < 3: | |||
f = save_dir / f'test_batch{batch_i}_labels.jpg' # labels | |||
f = save_dir / f'val_batch{batch_i}_labels.jpg' # labels | |||
Thread(target=plot_images, args=(img, targets, paths, f, names), daemon=True).start() | |||
f = save_dir / f'test_batch{batch_i}_pred.jpg' # predictions | |||
f = save_dir / f'val_batch{batch_i}_pred.jpg' # predictions | |||
Thread(target=plot_images, args=(img, output_to_target(out), paths, f, names), daemon=True).start() | |||
# Compute statistics | |||
@@ -262,7 +262,7 @@ def run(data, | |||
if plots: | |||
confusion_matrix.plot(save_dir=save_dir, names=list(names.values())) | |||
if wandb_logger and wandb_logger.wandb: | |||
val_batches = [wandb_logger.wandb.Image(str(f), caption=f.name) for f in sorted(save_dir.glob('test*.jpg'))] | |||
val_batches = [wandb_logger.wandb.Image(str(f), caption=f.name) for f in sorted(save_dir.glob('val*.jpg'))] | |||
wandb_logger.log({"Validation": val_batches}) | |||
if wandb_images: | |||
wandb_logger.log({"Bounding Box Debugger/Images": wandb_images}) | |||
@@ -305,7 +305,7 @@ def run(data, | |||
def parse_opt(): | |||
parser = argparse.ArgumentParser(prog='test.py') | |||
parser = argparse.ArgumentParser(prog='val.py') | |||
parser.add_argument('--data', type=str, default='data/coco128.yaml', help='dataset.yaml path') | |||
parser.add_argument('--weights', nargs='+', type=str, default='yolov5s.pt', help='model.pt path(s)') | |||
parser.add_argument('--batch-size', type=int, default=32, help='batch size') | |||
@@ -321,7 +321,7 @@ def parse_opt(): | |||
parser.add_argument('--save-hybrid', action='store_true', help='save label+prediction hybrid results to *.txt') | |||
parser.add_argument('--save-conf', action='store_true', help='save confidences in --save-txt labels') | |||
parser.add_argument('--save-json', action='store_true', help='save a cocoapi-compatible JSON results file') | |||
parser.add_argument('--project', default='runs/test', help='save to project/name') | |||
parser.add_argument('--project', default='runs/val', help='save to project/name') | |||
parser.add_argument('--name', default='exp', help='save to project/name') | |||
parser.add_argument('--exist-ok', action='store_true', help='existing project/name ok, do not increment') | |||
parser.add_argument('--half', action='store_true', help='use FP16 half-precision inference') | |||
@@ -334,7 +334,7 @@ def parse_opt(): | |||
def main(opt): | |||
set_logging() | |||
print(colorstr('test: ') + ', '.join(f'{k}={v}' for k, v in vars(opt).items())) | |||
print(colorstr('val: ') + ', '.join(f'{k}={v}' for k, v in vars(opt).items())) | |||
check_requirements(exclude=('tensorboard', 'thop')) | |||
if opt.task in ('train', 'val', 'test'): # run normally | |||
@@ -346,7 +346,7 @@ def main(opt): | |||
save_json=False, plots=False) | |||
elif opt.task == 'study': # run over a range of settings and save/plot | |||
# python test.py --task study --data coco.yaml --iou 0.7 --weights yolov5s.pt yolov5m.pt yolov5l.pt yolov5x.pt | |||
# python val.py --task study --data coco.yaml --iou 0.7 --weights yolov5s.pt yolov5m.pt yolov5l.pt yolov5x.pt | |||
x = list(range(256, 1536 + 128, 128)) # x axis (image sizes) | |||
for w in opt.weights if isinstance(opt.weights, list) else [opt.weights]: | |||
f = f'study_{Path(opt.data).stem}_{Path(w).stem}.txt' # filename to save to |