Browse Source

Start setup for improved W&B integration (#1948)

* Add helper functions for wandb and artifacts

* cleanup

* Reorganize files

* Update wandb_utils.py

* Update log_dataset.py

We can remove this code, as the giou hyp has been deprecated for a while now.

* Reorganize and update dataloader call

* yaml.SafeLoader

* PEP8 reformat

* remove redundant checks

* Add helper functions for wandb and artifacts

* cleanup

* Reorganize files

* Update wandb_utils.py

* Update log_dataset.py

We can remove this code, as the giou hyp has been deprecated for a while now.

* Reorganize and update dataloader call

* yaml.SafeLoader

* PEP8 reformat

* remove redundant checks

* Update util files

* Update wandb_utils.py

* Remove word size

* Change path of labels.zip

* remove unused imports

* remove --rect

* log_dataset.py cleanup

* log_dataset.py cleanup2

* wandb_utils.py cleanup

* remove redundant id_count

* wandb_utils.py cleanup2

* rename cls

* use pathlib for zip

* rename dataloader to dataset

* Change import order

* Remove redundant code

* remove unused import

* remove unused imports

Co-authored-by: Glenn Jocher <glenn.jocher@ultralytics.com>
5.0
Ayush Chaurasia GitHub 3 years ago
parent
commit
73a0669930
No known key found for this signature in database GPG Key ID: 4AEE18F83AFDEB23
4 changed files with 186 additions and 1 deletions
  1. +2
    -1
      utils/datasets.py
  2. +0
    -0
      utils/wandb_logging/__init__.py
  3. +39
    -0
      utils/wandb_logging/log_dataset.py
  4. +145
    -0
      utils/wandb_logging/wandb_utils.py

+ 2
- 1
utils/datasets.py View File

@@ -348,7 +348,8 @@ class LoadImagesAndLabels(Dataset): # for training/testing
self.mosaic = self.augment and not self.rect # load 4 images at a time into a mosaic (only during training)
self.mosaic_border = [-img_size // 2, -img_size // 2]
self.stride = stride

self.path = path
try:
f = [] # image files
for p in path if isinstance(path, list) else [path]:

+ 0
- 0
utils/wandb_logging/__init__.py View File


+ 39
- 0
utils/wandb_logging/log_dataset.py View File

@@ -0,0 +1,39 @@
import argparse
from pathlib import Path

import yaml

from wandb_utils import WandbLogger
from utils.datasets import LoadImagesAndLabels

WANDB_ARTIFACT_PREFIX = 'wandb-artifact://'


def create_dataset_artifact(opt):
with open(opt.data) as f:
data = yaml.load(f, Loader=yaml.SafeLoader) # data dict
logger = WandbLogger(opt, '', None, data, job_type='create_dataset')
nc, names = (1, ['item']) if opt.single_cls else (int(data['nc']), data['names'])
names = {k: v for k, v in enumerate(names)} # to index dictionary
logger.log_dataset_artifact(LoadImagesAndLabels(data['train']), names, name='train') # trainset
logger.log_dataset_artifact(LoadImagesAndLabels(data['val']), names, name='val') # valset

# Update data.yaml with artifact links
data['train'] = WANDB_ARTIFACT_PREFIX + str(Path(opt.project) / 'train')
data['val'] = WANDB_ARTIFACT_PREFIX + str(Path(opt.project) / 'val')
path = opt.data if opt.overwrite_config else opt.data.replace('.', '_wandb.') # updated data.yaml path
data.pop('download', None) # download via artifact instead of predefined field 'download:'
with open(path, 'w') as f:
yaml.dump(data, f)
print("New Config file => ", path)


if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--data', type=str, default='data/coco128.yaml', help='data.yaml path')
parser.add_argument('--single-cls', action='store_true', help='train as single-class dataset')
parser.add_argument('--project', type=str, default='YOLOv5', help='name of W&B Project')
parser.add_argument('--overwrite_config', action='store_true', help='overwrite data.yaml')
opt = parser.parse_args()

create_dataset_artifact(opt)

+ 145
- 0
utils/wandb_logging/wandb_utils.py View File

@@ -0,0 +1,145 @@
import json
import shutil
import sys
from datetime import datetime
from pathlib import Path

import torch

sys.path.append(str(Path(__file__).parent.parent.parent)) # add utils/ to path
from utils.general import colorstr, xywh2xyxy

try:
import wandb
except ImportError:
wandb = None
print(f"{colorstr('wandb: ')}Install Weights & Biases for YOLOv5 logging with 'pip install wandb' (recommended)")

WANDB_ARTIFACT_PREFIX = 'wandb-artifact://'


def remove_prefix(from_string, prefix):
return from_string[len(prefix):]


class WandbLogger():
def __init__(self, opt, name, run_id, data_dict, job_type='Training'):
self.wandb = wandb
self.wandb_run = wandb.init(config=opt, resume="allow",
project='YOLOv5' if opt.project == 'runs/train' else Path(opt.project).stem,
name=name,
job_type=job_type,
id=run_id) if self.wandb else None

if job_type == 'Training':
self.setup_training(opt, data_dict)
if opt.bbox_interval == -1:
opt.bbox_interval = (opt.epochs // 10) if opt.epochs > 10 else opt.epochs
if opt.save_period == -1:
opt.save_period = (opt.epochs // 10) if opt.epochs > 10 else opt.epochs

def setup_training(self, opt, data_dict):
self.log_dict = {}
self.train_artifact_path, self.trainset_artifact = \
self.download_dataset_artifact(data_dict['train'], opt.artifact_alias)
self.test_artifact_path, self.testset_artifact = \
self.download_dataset_artifact(data_dict['val'], opt.artifact_alias)
self.result_artifact, self.result_table, self.weights = None, None, None
if self.train_artifact_path is not None:
train_path = Path(self.train_artifact_path) / 'data/images/'
data_dict['train'] = str(train_path)
if self.test_artifact_path is not None:
test_path = Path(self.test_artifact_path) / 'data/images/'
data_dict['val'] = str(test_path)
self.result_artifact = wandb.Artifact("run_" + wandb.run.id + "_progress", "evaluation")
self.result_table = wandb.Table(["epoch", "id", "prediction", "avg_confidence"])
if opt.resume_from_artifact:
modeldir, _ = self.download_model_artifact(opt.resume_from_artifact)
if modeldir:
self.weights = Path(modeldir) / "best.pt"
opt.weights = self.weights

def download_dataset_artifact(self, path, alias):
if path.startswith(WANDB_ARTIFACT_PREFIX):
dataset_artifact = wandb.use_artifact(remove_prefix(path, WANDB_ARTIFACT_PREFIX) + ":" + alias)
assert dataset_artifact is not None, "'Error: W&B dataset artifact doesn\'t exist'"
datadir = dataset_artifact.download()
labels_zip = Path(datadir) / "data/labels.zip"
shutil.unpack_archive(labels_zip, Path(datadir) / 'data/labels', 'zip')
print("Downloaded dataset to : ", datadir)
return datadir, dataset_artifact
return None, None

def download_model_artifact(self, name):
model_artifact = wandb.use_artifact(name + ":latest")
assert model_artifact is not None, 'Error: W&B model artifact doesn\'t exist'
modeldir = model_artifact.download()
print("Downloaded model to : ", modeldir)
return modeldir, model_artifact

def log_model(self, path, opt, epoch):
datetime_suffix = datetime.today().strftime('%Y-%m-%d-%H-%M-%S')
model_artifact = wandb.Artifact('run_' + wandb.run.id + '_model', type='model', metadata={
'original_url': str(path),
'epoch': epoch + 1,
'save period': opt.save_period,
'project': opt.project,
'datetime': datetime_suffix
})
model_artifact.add_file(str(path / 'last.pt'), name='last.pt')
model_artifact.add_file(str(path / 'best.pt'), name='best.pt')
wandb.log_artifact(model_artifact)
print("Saving model artifact on epoch ", epoch + 1)

def log_dataset_artifact(self, dataset, class_to_id, name='dataset'):
artifact = wandb.Artifact(name=name, type="dataset")
image_path = dataset.path
artifact.add_dir(image_path, name='data/images')
table = wandb.Table(columns=["id", "train_image", "Classes"])
class_set = wandb.Classes([{'id': id, 'name': name} for id, name in class_to_id.items()])
for si, (img, labels, paths, shapes) in enumerate(dataset):
height, width = shapes[0]
labels[:, 2:] = (xywh2xyxy(labels[:, 2:].view(-1, 4)))
labels[:, 2:] *= torch.Tensor([width, height, width, height])
box_data = []
img_classes = {}
for cls, *xyxy in labels[:, 1:].tolist():
cls = int(cls)
box_data.append({"position": {"minX": xyxy[0], "minY": xyxy[1], "maxX": xyxy[2], "maxY": xyxy[3]},
"class_id": cls,
"box_caption": "%s" % (class_to_id[cls]),
"scores": {"acc": 1},
"domain": "pixel"})
img_classes[cls] = class_to_id[cls]
boxes = {"ground_truth": {"box_data": box_data, "class_labels": class_to_id}} # inference-space
table.add_data(si, wandb.Image(paths, classes=class_set, boxes=boxes), json.dumps(img_classes))
artifact.add(table, name)
labels_path = 'labels'.join(image_path.rsplit('images', 1))
zip_path = Path(labels_path).parent / (name + '_labels.zip')
if not zip_path.is_file(): # make_archive won't check if file exists
shutil.make_archive(zip_path.with_suffix(''), 'zip', labels_path)
artifact.add_file(str(zip_path), name='data/labels.zip')
wandb.log_artifact(artifact)
print("Saving data to W&B...")

def log(self, log_dict):
if self.wandb_run:
for key, value in log_dict.items():
self.log_dict[key] = value

def end_epoch(self):
if self.wandb_run and self.log_dict:
wandb.log(self.log_dict)
self.log_dict = {}

def finish_run(self):
if self.wandb_run:
if self.result_artifact:
print("Add Training Progress Artifact")
self.result_artifact.add(self.result_table, 'result')
train_results = wandb.JoinedTable(self.testset_artifact.get("val"), self.result_table, "id")
self.result_artifact.add(train_results, 'joined_result')
wandb.log_artifact(self.result_artifact)
if self.log_dict:
wandb.log(self.log_dict)
wandb.run.finish()

Loading…
Cancel
Save