|
|
|
|
|
|
|
|
print(f'Hyperparameters {hyp}') |
|
|
print(f'Hyperparameters {hyp}') |
|
|
log_dir = tb_writer.log_dir if tb_writer else 'runs/evolution' # run directory |
|
|
log_dir = tb_writer.log_dir if tb_writer else 'runs/evolution' # run directory |
|
|
wdir = str(Path(log_dir) / 'weights') + os.sep # weights directory |
|
|
wdir = str(Path(log_dir) / 'weights') + os.sep # weights directory |
|
|
|
|
|
|
|
|
os.makedirs(wdir, exist_ok=True) |
|
|
os.makedirs(wdir, exist_ok=True) |
|
|
last = wdir + 'last.pt' |
|
|
last = wdir + 'last.pt' |
|
|
best = wdir + 'best.pt' |
|
|
best = wdir + 'best.pt' |
|
|
results_file = log_dir + os.sep + 'results.txt' |
|
|
results_file = log_dir + os.sep + 'results.txt' |
|
|
|
|
|
epochs, batch_size, total_batch_size, weights, rank = opt.epochs, opt.batch_size, opt.total_batch_size, opt.weights, opt.local_rank |
|
|
|
|
|
# TODO: Init DDP logging. Only the first process is allowed to log. |
|
|
|
|
|
# Since I see lots of print here, the logging configuration is skipped here. We may see repeated outputs. |
|
|
|
|
|
|
|
|
# Save run settings |
|
|
# Save run settings |
|
|
with open(Path(log_dir) / 'hyp.yaml', 'w') as f: |
|
|
with open(Path(log_dir) / 'hyp.yaml', 'w') as f: |
|
|
|
|
|
|
|
|
with open(Path(log_dir) / 'opt.yaml', 'w') as f: |
|
|
with open(Path(log_dir) / 'opt.yaml', 'w') as f: |
|
|
yaml.dump(vars(opt), f, sort_keys=False) |
|
|
yaml.dump(vars(opt), f, sort_keys=False) |
|
|
|
|
|
|
|
|
epochs = opt.epochs # 300 |
|
|
|
|
|
batch_size = opt.batch_size # batch size per process. |
|
|
|
|
|
total_batch_size = opt.total_batch_size |
|
|
|
|
|
weights = opt.weights # initial training weights |
|
|
|
|
|
local_rank = opt.local_rank |
|
|
|
|
|
|
|
|
|
|
|
# TODO: Init DDP logging. Only the first process is allowed to log. |
|
|
|
|
|
# Since I see lots of print here, the logging configuration is skipped here. We may see repeated outputs. |
|
|
|
|
|
|
|
|
|
|
|
# Configure |
|
|
# Configure |
|
|
init_seeds(2 + local_rank) |
|
|
|
|
|
|
|
|
init_seeds(2 + rank) |
|
|
with open(opt.data) as f: |
|
|
with open(opt.data) as f: |
|
|
data_dict = yaml.load(f, Loader=yaml.FullLoader) # model dict |
|
|
data_dict = yaml.load(f, Loader=yaml.FullLoader) # model dict |
|
|
train_path = data_dict['train'] |
|
|
train_path = data_dict['train'] |
|
|
|
|
|
|
|
|
assert len(names) == nc, '%g names found for nc=%g dataset in %s' % (len(names), nc, opt.data) # check |
|
|
assert len(names) == nc, '%g names found for nc=%g dataset in %s' % (len(names), nc, opt.data) # check |
|
|
|
|
|
|
|
|
# Remove previous results |
|
|
# Remove previous results |
|
|
if local_rank in [-1, 0]: |
|
|
|
|
|
|
|
|
if rank in [-1, 0]: |
|
|
for f in glob.glob('*_batch*.jpg') + glob.glob(results_file): |
|
|
for f in glob.glob('*_batch*.jpg') + glob.glob(results_file): |
|
|
os.remove(f) |
|
|
os.remove(f) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
# Optimizer |
|
|
# Optimizer |
|
|
nbs = 64 # nominal batch size |
|
|
nbs = 64 # nominal batch size |
|
|
# the default DDP implementation is slow for accumulation according to: https://pytorch.org/docs/stable/notes/ddp.html |
|
|
|
|
|
|
|
|
# default DDP implementation is slow for accumulation according to: https://pytorch.org/docs/stable/notes/ddp.html |
|
|
# all-reduce operation is carried out during loss.backward(). |
|
|
# all-reduce operation is carried out during loss.backward(). |
|
|
# Thus, there would be redundant all-reduce communications in a accumulation procedure, |
|
|
# Thus, there would be redundant all-reduce communications in a accumulation procedure, |
|
|
# which means, the result is still right but the training speed gets slower. |
|
|
# which means, the result is still right but the training speed gets slower. |
|
|
|
|
|
|
|
|
del pg0, pg1, pg2 |
|
|
del pg0, pg1, pg2 |
|
|
|
|
|
|
|
|
# Load Model |
|
|
# Load Model |
|
|
# Avoid multiple downloads. |
|
|
|
|
|
with torch_distributed_zero_first(local_rank): |
|
|
|
|
|
|
|
|
with torch_distributed_zero_first(rank): |
|
|
google_utils.attempt_download(weights) |
|
|
google_utils.attempt_download(weights) |
|
|
start_epoch, best_fitness = 0, 0.0 |
|
|
start_epoch, best_fitness = 0, 0.0 |
|
|
if weights.endswith('.pt'): # pytorch format |
|
|
if weights.endswith('.pt'): # pytorch format |
|
|
|
|
|
|
|
|
# plot_lr_scheduler(optimizer, scheduler, epochs) |
|
|
# plot_lr_scheduler(optimizer, scheduler, epochs) |
|
|
|
|
|
|
|
|
# DP mode |
|
|
# DP mode |
|
|
if device.type != 'cpu' and local_rank == -1 and torch.cuda.device_count() > 1: |
|
|
|
|
|
|
|
|
if device.type != 'cpu' and rank == -1 and torch.cuda.device_count() > 1: |
|
|
model = torch.nn.DataParallel(model) |
|
|
model = torch.nn.DataParallel(model) |
|
|
|
|
|
|
|
|
# Exponential moving average |
|
|
|
|
|
# From https://github.com/rwightman/pytorch-image-models/blob/master/train.py: |
|
|
|
|
|
# "Important to create EMA model after cuda(), DP wrapper, and AMP but before SyncBN and DDP wrapper" |
|
|
|
|
|
# chenyzsjtu: ema should be placed before after SyncBN. As SyncBN introduces new modules. |
|
|
|
|
|
if opt.sync_bn and device.type != 'cpu' and local_rank != -1: |
|
|
|
|
|
print("SyncBN activated!") |
|
|
|
|
|
|
|
|
# SyncBatchNorm |
|
|
|
|
|
if opt.sync_bn and device.type != 'cpu' and rank != -1: |
|
|
model = torch.nn.SyncBatchNorm.convert_sync_batchnorm(model).to(device) |
|
|
model = torch.nn.SyncBatchNorm.convert_sync_batchnorm(model).to(device) |
|
|
ema = torch_utils.ModelEMA(model) if local_rank in [-1, 0] else None |
|
|
|
|
|
|
|
|
print('Using SyncBatchNorm()') |
|
|
|
|
|
|
|
|
|
|
|
# Exponential moving average |
|
|
|
|
|
ema = torch_utils.ModelEMA(model) if rank in [-1, 0] else None |
|
|
|
|
|
|
|
|
# DDP mode |
|
|
# DDP mode |
|
|
if device.type != 'cpu' and local_rank != -1: |
|
|
|
|
|
model = DDP(model, device_ids=[local_rank], output_device=local_rank) |
|
|
|
|
|
|
|
|
if device.type != 'cpu' and rank != -1: |
|
|
|
|
|
model = DDP(model, device_ids=[rank], output_device=rank) |
|
|
|
|
|
|
|
|
# Trainloader |
|
|
# Trainloader |
|
|
dataloader, dataset = create_dataloader(train_path, imgsz, batch_size, gs, opt, hyp=hyp, augment=True, |
|
|
dataloader, dataset = create_dataloader(train_path, imgsz, batch_size, gs, opt, hyp=hyp, augment=True, |
|
|
cache=opt.cache_images, rect=opt.rect, local_rank=local_rank, |
|
|
|
|
|
|
|
|
cache=opt.cache_images, rect=opt.rect, local_rank=rank, |
|
|
world_size=opt.world_size) |
|
|
world_size=opt.world_size) |
|
|
mlc = np.concatenate(dataset.labels, 0)[:, 0].max() # max label class |
|
|
mlc = np.concatenate(dataset.labels, 0)[:, 0].max() # max label class |
|
|
nb = len(dataloader) # number of batches |
|
|
nb = len(dataloader) # number of batches |
|
|
assert mlc < nc, 'Label class %g exceeds nc=%g in %s. Possible class labels are 0-%g' % (mlc, nc, opt.data, nc - 1) |
|
|
assert mlc < nc, 'Label class %g exceeds nc=%g in %s. Possible class labels are 0-%g' % (mlc, nc, opt.data, nc - 1) |
|
|
|
|
|
|
|
|
# Testloader |
|
|
# Testloader |
|
|
if local_rank in [-1, 0]: |
|
|
|
|
|
|
|
|
if rank in [-1, 0]: |
|
|
# local_rank is set to -1. Because only the first process is expected to do evaluation. |
|
|
# local_rank is set to -1. Because only the first process is expected to do evaluation. |
|
|
testloader = create_dataloader(test_path, imgsz_test, total_batch_size, gs, opt, hyp=hyp, augment=False, |
|
|
testloader = create_dataloader(test_path, imgsz_test, total_batch_size, gs, opt, hyp=hyp, augment=False, |
|
|
cache=opt.cache_images, rect=True, local_rank=-1, world_size=opt.world_size)[0] |
|
|
cache=opt.cache_images, rect=True, local_rank=-1, world_size=opt.world_size)[0] |
|
|
|
|
|
|
|
|
model.names = names |
|
|
model.names = names |
|
|
|
|
|
|
|
|
# Class frequency |
|
|
# Class frequency |
|
|
# Only one check and log is needed. |
|
|
|
|
|
if local_rank in [-1, 0]: |
|
|
|
|
|
|
|
|
if rank in [-1, 0]: |
|
|
labels = np.concatenate(dataset.labels, 0) |
|
|
labels = np.concatenate(dataset.labels, 0) |
|
|
c = torch.tensor(labels[:, 0]) # classes |
|
|
c = torch.tensor(labels[:, 0]) # classes |
|
|
# cf = torch.bincount(c.long(), minlength=nc) + 1. |
|
|
# cf = torch.bincount(c.long(), minlength=nc) + 1. |
|
|
|
|
|
|
|
|
# Check anchors |
|
|
# Check anchors |
|
|
if not opt.noautoanchor: |
|
|
if not opt.noautoanchor: |
|
|
check_anchors(dataset, model=model, thr=hyp['anchor_t'], imgsz=imgsz) |
|
|
check_anchors(dataset, model=model, thr=hyp['anchor_t'], imgsz=imgsz) |
|
|
|
|
|
|
|
|
# Start training |
|
|
# Start training |
|
|
t0 = time.time() |
|
|
t0 = time.time() |
|
|
nw = max(3 * nb, 1e3) # number of warmup iterations, max(3 epochs, 1k iterations) |
|
|
nw = max(3 * nb, 1e3) # number of warmup iterations, max(3 epochs, 1k iterations) |
|
|
maps = np.zeros(nc) # mAP per class |
|
|
maps = np.zeros(nc) # mAP per class |
|
|
results = (0, 0, 0, 0, 0, 0, 0) # 'P', 'R', 'mAP', 'F1', 'val GIoU', 'val Objectness', 'val Classification' |
|
|
results = (0, 0, 0, 0, 0, 0, 0) # 'P', 'R', 'mAP', 'F1', 'val GIoU', 'val Objectness', 'val Classification' |
|
|
scheduler.last_epoch = start_epoch - 1 # do not move |
|
|
scheduler.last_epoch = start_epoch - 1 # do not move |
|
|
if local_rank in [0, -1]: |
|
|
|
|
|
|
|
|
if rank in [0, -1]: |
|
|
print('Image sizes %g train, %g test' % (imgsz, imgsz_test)) |
|
|
print('Image sizes %g train, %g test' % (imgsz, imgsz_test)) |
|
|
print('Using %g dataloader workers' % dataloader.num_workers) |
|
|
print('Using %g dataloader workers' % dataloader.num_workers) |
|
|
print('Starting training for %g epochs...' % epochs) |
|
|
print('Starting training for %g epochs...' % epochs) |
|
|
|
|
|
|
|
|
# When in DDP mode, the generated indices will be broadcasted to synchronize dataset. |
|
|
# When in DDP mode, the generated indices will be broadcasted to synchronize dataset. |
|
|
if dataset.image_weights: |
|
|
if dataset.image_weights: |
|
|
# Generate indices. |
|
|
# Generate indices. |
|
|
if local_rank in [-1, 0]: |
|
|
|
|
|
|
|
|
if rank in [-1, 0]: |
|
|
w = model.class_weights.cpu().numpy() * (1 - maps) ** 2 # class weights |
|
|
w = model.class_weights.cpu().numpy() * (1 - maps) ** 2 # class weights |
|
|
image_weights = labels_to_image_weights(dataset.labels, nc=nc, class_weights=w) |
|
|
image_weights = labels_to_image_weights(dataset.labels, nc=nc, class_weights=w) |
|
|
dataset.indices = random.choices(range(dataset.n), weights=image_weights, |
|
|
dataset.indices = random.choices(range(dataset.n), weights=image_weights, |
|
|
k=dataset.n) # rand weighted idx |
|
|
k=dataset.n) # rand weighted idx |
|
|
# Broadcast. |
|
|
# Broadcast. |
|
|
if local_rank != -1: |
|
|
|
|
|
|
|
|
if rank != -1: |
|
|
indices = torch.zeros([dataset.n], dtype=torch.int) |
|
|
indices = torch.zeros([dataset.n], dtype=torch.int) |
|
|
if local_rank == 0: |
|
|
|
|
|
|
|
|
if rank == 0: |
|
|
indices[:] = torch.from_tensor(dataset.indices, dtype=torch.int) |
|
|
indices[:] = torch.from_tensor(dataset.indices, dtype=torch.int) |
|
|
dist.broadcast(indices, 0) |
|
|
dist.broadcast(indices, 0) |
|
|
if local_rank != 0: |
|
|
|
|
|
|
|
|
if rank != 0: |
|
|
dataset.indices = indices.cpu().numpy() |
|
|
dataset.indices = indices.cpu().numpy() |
|
|
|
|
|
|
|
|
# Update mosaic border |
|
|
# Update mosaic border |
|
|
|
|
|
|
|
|
# dataset.mosaic_border = [b - imgsz, -b] # height, width borders |
|
|
# dataset.mosaic_border = [b - imgsz, -b] # height, width borders |
|
|
|
|
|
|
|
|
mloss = torch.zeros(4, device=device) # mean losses |
|
|
mloss = torch.zeros(4, device=device) # mean losses |
|
|
if local_rank != -1: |
|
|
|
|
|
|
|
|
if rank != -1: |
|
|
dataloader.sampler.set_epoch(epoch) |
|
|
dataloader.sampler.set_epoch(epoch) |
|
|
pbar = enumerate(dataloader) |
|
|
pbar = enumerate(dataloader) |
|
|
if local_rank in [-1, 0]: |
|
|
|
|
|
|
|
|
if rank in [-1, 0]: |
|
|
print(('\n' + '%10s' * 8) % ('Epoch', 'gpu_mem', 'GIoU', 'obj', 'cls', 'total', 'targets', 'img_size')) |
|
|
print(('\n' + '%10s' * 8) % ('Epoch', 'gpu_mem', 'GIoU', 'obj', 'cls', 'total', 'targets', 'img_size')) |
|
|
pbar = tqdm(pbar, total=nb) # progress bar |
|
|
pbar = tqdm(pbar, total=nb) # progress bar |
|
|
optimizer.zero_grad() |
|
|
optimizer.zero_grad() |
|
|
|
|
|
|
|
|
pred = model(imgs) |
|
|
pred = model(imgs) |
|
|
|
|
|
|
|
|
# Loss |
|
|
# Loss |
|
|
loss, loss_items = compute_loss(pred, targets.to(device), model) |
|
|
|
|
|
# loss is scaled with batch size in func compute_loss. But in DDP mode, gradient is averaged between devices. |
|
|
|
|
|
if local_rank != -1: |
|
|
|
|
|
loss *= opt.world_size |
|
|
|
|
|
|
|
|
loss, loss_items = compute_loss(pred, targets.to(device), model) # scaled by batch_size |
|
|
|
|
|
if rank != -1: |
|
|
|
|
|
loss *= opt.world_size # gradient averaged between devices in DDP mode |
|
|
if not torch.isfinite(loss): |
|
|
if not torch.isfinite(loss): |
|
|
print('WARNING: non-finite loss, ending training ', loss_items) |
|
|
print('WARNING: non-finite loss, ending training ', loss_items) |
|
|
return results |
|
|
return results |
|
|
|
|
|
|
|
|
ema.update(model) |
|
|
ema.update(model) |
|
|
|
|
|
|
|
|
# Print |
|
|
# Print |
|
|
if local_rank in [-1, 0]: |
|
|
|
|
|
|
|
|
if rank in [-1, 0]: |
|
|
mloss = (mloss * i + loss_items) / (i + 1) # update mean losses |
|
|
mloss = (mloss * i + loss_items) / (i + 1) # update mean losses |
|
|
mem = '%.3gG' % (torch.cuda.memory_cached() / 1E9 if torch.cuda.is_available() else 0) # (GB) |
|
|
mem = '%.3gG' % (torch.cuda.memory_cached() / 1E9 if torch.cuda.is_available() else 0) # (GB) |
|
|
s = ('%10s' * 2 + '%10.4g' * 6) % ( |
|
|
s = ('%10s' * 2 + '%10.4g' * 6) % ( |
|
|
|
|
|
|
|
|
scheduler.step() |
|
|
scheduler.step() |
|
|
|
|
|
|
|
|
# Only the first process in DDP mode is allowed to log or save checkpoints. |
|
|
# Only the first process in DDP mode is allowed to log or save checkpoints. |
|
|
if local_rank in [-1, 0]: |
|
|
|
|
|
|
|
|
if rank in [-1, 0]: |
|
|
# mAP |
|
|
# mAP |
|
|
if ema is not None: |
|
|
if ema is not None: |
|
|
ema.update_attr(model, include=['md', 'nc', 'hyp', 'gr', 'names', 'stride']) |
|
|
ema.update_attr(model, include=['md', 'nc', 'hyp', 'gr', 'names', 'stride']) |
|
|
|
|
|
|
|
|
single_cls=opt.single_cls, |
|
|
single_cls=opt.single_cls, |
|
|
dataloader=testloader, |
|
|
dataloader=testloader, |
|
|
save_dir=log_dir) |
|
|
save_dir=log_dir) |
|
|
# Explicitly keep the shape. |
|
|
|
|
|
|
|
|
|
|
|
# Write |
|
|
# Write |
|
|
with open(results_file, 'a') as f: |
|
|
with open(results_file, 'a') as f: |
|
|
f.write(s + '%10.4g' * 7 % results + '\n') # P, R, mAP, F1, test_losses=(GIoU, obj, cls) |
|
|
f.write(s + '%10.4g' * 7 % results + '\n') # P, R, mAP, F1, test_losses=(GIoU, obj, cls) |
|
|
if len(opt.name) and opt.bucket: |
|
|
if len(opt.name) and opt.bucket: |
|
|
os.system('gsutil cp results.txt gs://%s/results/results%s.txt' % (opt.bucket, opt.name)) |
|
|
|
|
|
|
|
|
os.system('gsutil cp %s gs://%s/results/results%s.txt' % (results_file, opt.bucket, opt.name)) |
|
|
|
|
|
|
|
|
# Tensorboard |
|
|
# Tensorboard |
|
|
if tb_writer: |
|
|
if tb_writer: |
|
|
tags = ['train/giou_loss', 'train/obj_loss', 'train/cls_loss', |
|
|
tags = ['train/giou_loss', 'train/obj_loss', 'train/cls_loss', |
|
|
'metrics/precision', 'metrics/recall', 'metrics/mAP_0.5', 'metrics/F1', |
|
|
|
|
|
|
|
|
'metrics/precision', 'metrics/recall', 'metrics/mAP_0.5', 'metrics/mAP_0.5:0.95', |
|
|
'val/giou_loss', 'val/obj_loss', 'val/cls_loss'] |
|
|
'val/giou_loss', 'val/obj_loss', 'val/cls_loss'] |
|
|
for x, tag in zip(list(mloss[:-1]) + list(results), tags): |
|
|
for x, tag in zip(list(mloss[:-1]) + list(results), tags): |
|
|
tb_writer.add_scalar(tag, x, epoch) |
|
|
tb_writer.add_scalar(tag, x, epoch) |
|
|
|
|
|
|
|
|
# end epoch ---------------------------------------------------------------------------------------------------- |
|
|
# end epoch ---------------------------------------------------------------------------------------------------- |
|
|
# end training |
|
|
# end training |
|
|
|
|
|
|
|
|
if local_rank in [-1, 0]: |
|
|
|
|
|
|
|
|
if rank in [-1, 0]: |
|
|
# Strip optimizers |
|
|
# Strip optimizers |
|
|
n = ('_' if len(opt.name) and not opt.name.isnumeric() else '') + opt.name |
|
|
n = ('_' if len(opt.name) and not opt.name.isnumeric() else '') + opt.name |
|
|
fresults, flast, fbest = 'results%s.txt' % n, wdir + 'last%s.pt' % n, wdir + 'best%s.pt' % n |
|
|
fresults, flast, fbest = 'results%s.txt' % n, wdir + 'last%s.pt' % n, wdir + 'best%s.pt' % n |
|
|
|
|
|
|
|
|
os.system('gsutil cp %s gs://%s/weights' % (f2, opt.bucket)) if opt.bucket and ispt else None # upload |
|
|
os.system('gsutil cp %s gs://%s/weights' % (f2, opt.bucket)) if opt.bucket and ispt else None # upload |
|
|
# Finish |
|
|
# Finish |
|
|
if not opt.evolve: |
|
|
if not opt.evolve: |
|
|
plot_results() # save as results.png |
|
|
|
|
|
|
|
|
plot_results(save_dir=log_dir) # save as results.png |
|
|
print('%g epochs completed in %.3f hours.\n' % (epoch - start_epoch + 1, (time.time() - t0) / 3600)) |
|
|
print('%g epochs completed in %.3f hours.\n' % (epoch - start_epoch + 1, (time.time() - t0) / 3600)) |
|
|
|
|
|
|
|
|
dist.destroy_process_group() if local_rank not in [-1, 0] else None |
|
|
|
|
|
|
|
|
dist.destroy_process_group() if rank not in [-1, 0] else None |
|
|
torch.cuda.empty_cache() |
|
|
torch.cuda.empty_cache() |
|
|
return results |
|
|
return results |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu') |
|
|
parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu') |
|
|
parser.add_argument('--multi-scale', action='store_true', help='vary img-size +/- 50%%') |
|
|
parser.add_argument('--multi-scale', action='store_true', help='vary img-size +/- 50%%') |
|
|
parser.add_argument('--single-cls', action='store_true', help='train as single-class dataset') |
|
|
parser.add_argument('--single-cls', action='store_true', help='train as single-class dataset') |
|
|
parser.add_argument("--sync-bn", action="store_true", help="Use sync-bn, only avaible in DDP mode.") |
|
|
|
|
|
# Parameter For DDP. |
|
|
|
|
|
parser.add_argument('--local_rank', type=int, default=-1, |
|
|
|
|
|
help="Extra parameter for DDP implementation. Don't use it manually.") |
|
|
|
|
|
|
|
|
parser.add_argument('--sync-bn', action="store_true", help='use SyncBatchNorm, only available in DDP mode') |
|
|
|
|
|
parser.add_argument('--local_rank', type=int, default=-1, help='DDP parameter, do not modify') |
|
|
opt = parser.parse_args() |
|
|
opt = parser.parse_args() |
|
|
|
|
|
|
|
|
last = get_latest_run() if opt.resume == 'get_last' else opt.resume # resume from most recent run |
|
|
last = get_latest_run() if opt.resume == 'get_last' else opt.resume # resume from most recent run |