* Pycocotools best.pt after COCO train * cleanup5.0
@@ -0,0 +1,41 @@ | |||
# parameters | |||
nc: 80 # number of classes | |||
depth_multiple: 1.0 # model depth multiple | |||
width_multiple: 1.0 # layer channel multiple | |||
# anchors | |||
anchors: | |||
- [10,14, 23,27, 37,58] # P4/16 | |||
- [81,82, 135,169, 344,319] # P5/32 | |||
# YOLOv3-tiny backbone | |||
backbone: | |||
# [from, number, module, args] | |||
[[-1, 1, Conv, [16, 3, 1]], # 0 | |||
[-1, 1, nn.MaxPool2d, [2, 2, 0]], # 1-P1/2 | |||
[-1, 1, Conv, [32, 3, 1]], | |||
[-1, 1, nn.MaxPool2d, [2, 2, 0]], # 3-P2/4 | |||
[-1, 1, Conv, [64, 3, 1]], | |||
[-1, 1, nn.MaxPool2d, [2, 2, 0]], # 5-P3/8 | |||
[-1, 1, Conv, [128, 3, 1]], | |||
[-1, 1, nn.MaxPool2d, [2, 2, 0]], # 7-P4/16 | |||
[-1, 1, Conv, [256, 3, 1]], | |||
[-1, 1, nn.MaxPool2d, [2, 2, 0]], # 9-P5/32 | |||
[-1, 1, Conv, [512, 3, 1]], | |||
[-1, 1, nn.ZeroPad2d, [0, 1, 0, 1]], # 11 | |||
[-1, 1, nn.MaxPool2d, [2, 1, 0]], # 12 | |||
] | |||
# YOLOv3-tiny head | |||
head: | |||
[[-1, 1, Conv, [1024, 3, 1]], | |||
[-1, 1, Conv, [256, 1, 1]], | |||
[-1, 1, Conv, [512, 3, 1]], # 15 (P5/32-large) | |||
[-2, 1, Conv, [128, 1, 1]], | |||
[-1, 1, nn.Upsample, [None, 2, 'nearest']], | |||
[[-1, 8], 1, Concat, [1]], # cat backbone P4 | |||
[-1, 1, Conv, [256, 3, 1]], # 19 (P4/16-medium) | |||
[[19, 15], 1, Detect, [nc, anchors]], # Detect(P4, P5) | |||
] |
@@ -0,0 +1,51 @@ | |||
# parameters | |||
nc: 80 # number of classes | |||
depth_multiple: 1.0 # model depth multiple | |||
width_multiple: 1.0 # layer channel multiple | |||
# anchors | |||
anchors: | |||
- [10,13, 16,30, 33,23] # P3/8 | |||
- [30,61, 62,45, 59,119] # P4/16 | |||
- [116,90, 156,198, 373,326] # P5/32 | |||
# darknet53 backbone | |||
backbone: | |||
# [from, number, module, args] | |||
[[-1, 1, Conv, [32, 3, 1]], # 0 | |||
[-1, 1, Conv, [64, 3, 2]], # 1-P1/2 | |||
[-1, 1, Bottleneck, [64]], | |||
[-1, 1, Conv, [128, 3, 2]], # 3-P2/4 | |||
[-1, 2, Bottleneck, [128]], | |||
[-1, 1, Conv, [256, 3, 2]], # 5-P3/8 | |||
[-1, 8, Bottleneck, [256]], | |||
[-1, 1, Conv, [512, 3, 2]], # 7-P4/16 | |||
[-1, 8, Bottleneck, [512]], | |||
[-1, 1, Conv, [1024, 3, 2]], # 9-P5/32 | |||
[-1, 4, Bottleneck, [1024]], # 10 | |||
] | |||
# YOLOv3 head | |||
head: | |||
[[-1, 1, Bottleneck, [1024, False]], | |||
[-1, 1, Conv, [512, [1, 1]]], | |||
[-1, 1, Conv, [1024, 3, 1]], | |||
[-1, 1, Conv, [512, 1, 1]], | |||
[-1, 1, Conv, [1024, 3, 1]], # 15 (P5/32-large) | |||
[-2, 1, Conv, [256, 1, 1]], | |||
[-1, 1, nn.Upsample, [None, 2, 'nearest']], | |||
[[-1, 8], 1, Concat, [1]], # cat backbone P4 | |||
[-1, 1, Bottleneck, [512, False]], | |||
[-1, 1, Bottleneck, [512, False]], | |||
[-1, 1, Conv, [256, 1, 1]], | |||
[-1, 1, Conv, [512, 3, 1]], # 22 (P4/16-medium) | |||
[-2, 1, Conv, [128, 1, 1]], | |||
[-1, 1, nn.Upsample, [None, 2, 'nearest']], | |||
[[-1, 6], 1, Concat, [1]], # cat backbone P3 | |||
[-1, 1, Bottleneck, [256, False]], | |||
[-1, 2, Bottleneck, [256, False]], # 27 (P3/8-small) | |||
[[27, 22, 15], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5) | |||
] |
@@ -1,5 +1,4 @@ | |||
import argparse | |||
import glob | |||
import json | |||
import os | |||
from pathlib import Path | |||
@@ -246,7 +245,7 @@ def test(data, | |||
# Save JSON | |||
if save_json and len(jdict): | |||
w = Path(weights[0] if isinstance(weights, list) else weights).stem if weights is not None else '' # weights | |||
anno_json = glob.glob('../coco/annotations/instances_val*.json')[0] # annotations json | |||
anno_json = '../coco/annotations/instances_val2017.json' # annotations json | |||
pred_json = str(save_dir / f"{w}_predictions.json") # predictions json | |||
print('\nEvaluating pycocotools mAP... saving %s...' % pred_json) | |||
with open(pred_json, 'w') as f: | |||
@@ -266,7 +265,7 @@ def test(data, | |||
eval.summarize() | |||
map, map50 = eval.stats[:2] # update results (mAP@0.5:0.95, mAP@0.5) | |||
except Exception as e: | |||
print('ERROR: pycocotools unable to run: %s' % e) | |||
print(f'pycocotools unable to run: {e}') | |||
# Return results | |||
if not training: |
@@ -22,6 +22,7 @@ from torch.utils.tensorboard import SummaryWriter | |||
from tqdm import tqdm | |||
import test # import test.py to get mAP after each epoch | |||
from models.experimental import attempt_load | |||
from models.yolo import Model | |||
from utils.autoanchor import check_anchors | |||
from utils.datasets import create_dataloader | |||
@@ -193,9 +194,9 @@ def train(hyp, opt, device, tb_writer=None, wandb=None): | |||
# Process 0 | |||
if rank in [-1, 0]: | |||
ema.updates = start_epoch * nb // accumulate # set EMA updates | |||
testloader = create_dataloader(test_path, imgsz_test, total_batch_size, gs, opt, | |||
testloader = create_dataloader(test_path, imgsz_test, total_batch_size, gs, opt, # testloader | |||
hyp=hyp, cache=opt.cache_images and not opt.notest, rect=True, | |||
rank=-1, world_size=opt.world_size, workers=opt.workers)[0] # testloader | |||
rank=-1, world_size=opt.world_size, workers=opt.workers, pad=0.5)[0] | |||
if not opt.resume: | |||
labels = np.concatenate(dataset.labels, 0) | |||
@@ -385,15 +386,12 @@ def train(hyp, opt, device, tb_writer=None, wandb=None): | |||
if rank in [-1, 0]: | |||
# Strip optimizers | |||
n = opt.name if opt.name.isnumeric() else '' | |||
fresults, flast, fbest = save_dir / f'results{n}.txt', wdir / f'last{n}.pt', wdir / f'best{n}.pt' | |||
for f1, f2 in zip([wdir / 'last.pt', wdir / 'best.pt', results_file], [flast, fbest, fresults]): | |||
if f1.exists(): | |||
os.rename(f1, f2) # rename | |||
if str(f2).endswith('.pt'): # is *.pt | |||
strip_optimizer(f2) # strip optimizer | |||
os.system('gsutil cp %s gs://%s/weights' % (f2, opt.bucket)) if opt.bucket else None # upload | |||
# Finish | |||
for f in [last, best]: | |||
if f.exists(): # is *.pt | |||
strip_optimizer(f) # strip optimizer | |||
os.system('gsutil cp %s gs://%s/weights' % (f, opt.bucket)) if opt.bucket else None # upload | |||
# Plots | |||
if plots: | |||
plot_results(save_dir=save_dir) # save as results.png | |||
if wandb: | |||
@@ -401,6 +399,19 @@ def train(hyp, opt, device, tb_writer=None, wandb=None): | |||
wandb.log({"Results": [wandb.Image(str(save_dir / f), caption=f) for f in files | |||
if (save_dir / f).exists()]}) | |||
logger.info('%g epochs completed in %.3f hours.\n' % (epoch - start_epoch + 1, (time.time() - t0) / 3600)) | |||
# Test best.pt | |||
if opt.data.endswith('coco.yaml') and nc == 80: # if COCO | |||
results, _, _ = test.test(opt.data, | |||
batch_size=total_batch_size, | |||
imgsz=imgsz_test, | |||
model=attempt_load(best if best.exists() else last, device).half(), | |||
single_cls=opt.single_cls, | |||
dataloader=testloader, | |||
save_dir=save_dir, | |||
save_json=True, # use pycocotools | |||
plots=False) | |||
else: | |||
dist.destroy_process_group() | |||
@@ -17,7 +17,7 @@ def gsutil_getsize(url=''): | |||
def attempt_download(weights): | |||
# Attempt to download pretrained weights if not found locally | |||
weights = weights.strip().replace("'", '') | |||
weights = str(weights).strip().replace("'", '') | |||
file = Path(weights).name.lower() | |||
msg = weights + ' missing, try downloading from https://github.com/ultralytics/yolov5/releases/' |