|
|
@@ -17,13 +17,16 @@ import models |
|
|
|
from models.experimental import attempt_load |
|
|
|
from utils.activations import Hardswish, SiLU |
|
|
|
from utils.general import set_logging, check_img_size |
|
|
|
from utils.torch_utils import select_device |
|
|
|
|
|
|
|
if __name__ == '__main__': |
|
|
|
parser = argparse.ArgumentParser() |
|
|
|
parser.add_argument('--weights', type=str, default='./yolov5s.pt', help='weights path') # from yolov5/models/ |
|
|
|
parser.add_argument('--img-size', nargs='+', type=int, default=[640, 640], help='image size') # height, width |
|
|
|
parser.add_argument('--dynamic', action='store_true', help='dynamic ONNX axes') |
|
|
|
parser.add_argument('--batch-size', type=int, default=1, help='batch size') |
|
|
|
parser.add_argument('--dynamic', action='store_true', help='dynamic ONNX axes') |
|
|
|
parser.add_argument('--grid', action='store_true', help='export Detect() layer grid') |
|
|
|
parser.add_argument('--device', default='cpu', help='cuda device, i.e. 0 or 0,1,2,3 or cpu') |
|
|
|
opt = parser.parse_args() |
|
|
|
opt.img_size *= 2 if len(opt.img_size) == 1 else 1 # expand |
|
|
|
print(opt) |
|
|
@@ -31,7 +34,8 @@ if __name__ == '__main__': |
|
|
|
t = time.time() |
|
|
|
|
|
|
|
# Load PyTorch model |
|
|
|
model = attempt_load(opt.weights, map_location=torch.device('cpu')) # load FP32 model |
|
|
|
device = select_device(opt.device) |
|
|
|
model = attempt_load(opt.weights, map_location=device) # load FP32 model |
|
|
|
labels = model.names |
|
|
|
|
|
|
|
# Checks |
|
|
@@ -39,7 +43,7 @@ if __name__ == '__main__': |
|
|
|
opt.img_size = [check_img_size(x, gs) for x in opt.img_size] # verify img_size are gs-multiples |
|
|
|
|
|
|
|
# Input |
|
|
|
img = torch.zeros(opt.batch_size, 3, *opt.img_size) # image size(1,3,320,192) iDetection |
|
|
|
img = torch.zeros(opt.batch_size, 3, *opt.img_size).to(device) # image size(1,3,320,192) iDetection |
|
|
|
|
|
|
|
# Update model |
|
|
|
for k, m in model.named_modules(): |
|
|
@@ -51,7 +55,7 @@ if __name__ == '__main__': |
|
|
|
m.act = SiLU() |
|
|
|
# elif isinstance(m, models.yolo.Detect): |
|
|
|
# m.forward = m.forward_export # assign forward (optional) |
|
|
|
model.model[-1].export = True # set Detect() layer export=True |
|
|
|
model.model[-1].export = not opt.grid # set Detect() layer grid export |
|
|
|
y = model(img) # dry run |
|
|
|
|
|
|
|
# TorchScript export |