Browse Source

Update `dataset_stats()` (#3593)

@KalenMike this is a PR to add image filenames and labels to our stats dictionary and to save the dictionary to JSON. Save location is next to the train labels.cache file. The single JSON contains all stats for entire dataset.

Usage example:
```python
from utils.datasets import *

dataset_stats('coco128.yaml', verbose=True)
```
modifyDataloader
Glenn Jocher GitHub 3 years ago
parent
commit
7a565f130a
No known key found for this signature in database GPG Key ID: 4AEE18F83AFDEB23
1 changed files with 12 additions and 3 deletions
  1. +12
    -3
      utils/datasets.py

+ 12
- 3
utils/datasets.py View File

@@ -2,6 +2,7 @@

import glob
import hashlib
import json
import logging
import math
import os
@@ -1105,12 +1106,20 @@ def dataset_stats(path='coco128.yaml', autodownload=False, verbose=False):
continue
x = []
dataset = LoadImagesAndLabels(data[split], augment=False, rect=True) # load dataset
if split == 'train':
cache_path = Path(dataset.label_files[0]).parent.with_suffix('.cache') # *.cache path
for label in tqdm(dataset.labels, total=dataset.n, desc='Statistics'):
x.append(np.bincount(label[:, 0].astype(int), minlength=nc))
x = np.array(x) # shape(128x80)
stats[split] = {'instances': {'total': int(x.sum()), 'per_class': x.sum(0).tolist()},
'images': {'total': dataset.n, 'unlabelled': int(np.all(x == 0, 1).sum()),
'per_class': (x > 0).sum(0).tolist()}}
stats[split] = {'instance_stats': {'total': int(x.sum()), 'per_class': x.sum(0).tolist()},
'image_stats': {'total': dataset.n, 'unlabelled': int(np.all(x == 0, 1).sum()),
'per_class': (x > 0).sum(0).tolist()},
'labels': {str(Path(k).name): v.tolist() for k, v in zip(dataset.img_files, dataset.labels)}}

# Save, print and return
with open(cache_path.with_suffix('.json'), 'w') as f:
json.dump(stats, f) # save stats *.json
if verbose:
print(yaml.dump([stats], sort_keys=False, default_flow_style=False))
# print(json.dumps(stats, indent=2, sort_keys=False))
return stats

Loading…
Cancel
Save