* Improved detect.py timing * Eliminate 1 time_sync() call * Inference-only time * dash * #Save section * CleanupmodifyDataloader
@@ -8,7 +8,6 @@ Usage: | |||
import argparse | |||
import sys | |||
import time | |||
from pathlib import Path | |||
import cv2 | |||
@@ -123,8 +122,9 @@ def run(weights='yolov5s.pt', # model.pt path(s) | |||
# Run inference | |||
if pt and device.type != 'cpu': | |||
model(torch.zeros(1, 3, *imgsz).to(device).type_as(next(model.parameters()))) # run once | |||
t0 = time.time() | |||
dt, seen = [0.0, 0.0, 0.0], 0 | |||
for path, img, im0s, vid_cap in dataset: | |||
t1 = time_sync() | |||
if onnx: | |||
img = img.astype('float32') | |||
else: | |||
@@ -133,9 +133,10 @@ def run(weights='yolov5s.pt', # model.pt path(s) | |||
img = img / 255.0 # 0 - 255 to 0.0 - 1.0 | |||
if len(img.shape) == 3: | |||
img = img[None] # expand for batch dim | |||
t2 = time_sync() | |||
dt[0] += t2 - t1 | |||
# Inference | |||
t1 = time_sync() | |||
if pt: | |||
visualize = increment_path(save_dir / Path(path).stem, mkdir=True) if visualize else False | |||
pred = model(img, augment=augment, visualize=visualize)[0] | |||
@@ -162,17 +163,20 @@ def run(weights='yolov5s.pt', # model.pt path(s) | |||
pred[..., 2] *= imgsz[1] # w | |||
pred[..., 3] *= imgsz[0] # h | |||
pred = torch.tensor(pred) | |||
t3 = time_sync() | |||
dt[1] += t3 - t2 | |||
# NMS | |||
pred = non_max_suppression(pred, conf_thres, iou_thres, classes, agnostic_nms, max_det=max_det) | |||
t2 = time_sync() | |||
dt[2] += time_sync() - t3 | |||
# Second-stage classifier (optional) | |||
if classify: | |||
pred = apply_classifier(pred, modelc, img, im0s) | |||
# Process predictions | |||
for i, det in enumerate(pred): # detections per image | |||
for i, det in enumerate(pred): # per image | |||
seen += 1 | |||
if webcam: # batch_size >= 1 | |||
p, s, im0, frame = path[i], f'{i}: ', im0s[i].copy(), dataset.count | |||
else: | |||
@@ -209,8 +213,8 @@ def run(weights='yolov5s.pt', # model.pt path(s) | |||
if save_crop: | |||
save_one_box(xyxy, imc, file=save_dir / 'crops' / names[c] / f'{p.stem}.jpg', BGR=True) | |||
# Print time (inference + NMS) | |||
print(f'{s}Done. ({t2 - t1:.3f}s)') | |||
# Print time (inference-only) | |||
print(f'{s}Done. ({t3 - t2:.3f}s)') | |||
# Stream results | |||
im0 = annotator.result() | |||
@@ -237,15 +241,15 @@ def run(weights='yolov5s.pt', # model.pt path(s) | |||
vid_writer[i] = cv2.VideoWriter(save_path, cv2.VideoWriter_fourcc(*'mp4v'), fps, (w, h)) | |||
vid_writer[i].write(im0) | |||
# Print results | |||
t = tuple(x / seen * 1E3 for x in dt) # speeds per image | |||
print(f'Speed: %.1fms pre-process, %.1fms inference, %.1fms NMS per image at shape {(1, 3, *imgsz)}' % t) | |||
if save_txt or save_img: | |||
s = f"\n{len(list(save_dir.glob('labels/*.txt')))} labels saved to {save_dir / 'labels'}" if save_txt else '' | |||
print(f"Results saved to {colorstr('bold', save_dir)}{s}") | |||
if update: | |||
strip_optimizer(weights) # update model (to fix SourceChangeWarning) | |||
print(f'Done. ({time.time() - t0:.3f}s)') | |||
def parse_opt(): | |||
parser = argparse.ArgumentParser() |
@@ -154,22 +154,22 @@ def run(data, | |||
names = {k: v for k, v in enumerate(model.names if hasattr(model, 'names') else model.module.names)} | |||
class_map = coco80_to_coco91_class() if is_coco else list(range(1000)) | |||
s = ('%20s' + '%11s' * 6) % ('Class', 'Images', 'Labels', 'P', 'R', 'mAP@.5', 'mAP@.5:.95') | |||
p, r, f1, mp, mr, map50, map, t0, t1, t2 = 0., 0., 0., 0., 0., 0., 0., 0., 0., 0. | |||
dt, p, r, f1, mp, mr, map50, map = [0.0, 0.0, 0.0], 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0 | |||
loss = torch.zeros(3, device=device) | |||
jdict, stats, ap, ap_class = [], [], [], [] | |||
for batch_i, (img, targets, paths, shapes) in enumerate(tqdm(dataloader, desc=s)): | |||
t_ = time_sync() | |||
t1 = time_sync() | |||
img = img.to(device, non_blocking=True) | |||
img = img.half() if half else img.float() # uint8 to fp16/32 | |||
img /= 255.0 # 0 - 255 to 0.0 - 1.0 | |||
targets = targets.to(device) | |||
nb, _, height, width = img.shape # batch size, channels, height, width | |||
t = time_sync() | |||
t0 += t - t_ | |||
t2 = time_sync() | |||
dt[0] += t2 - t1 | |||
# Run model | |||
out, train_out = model(img, augment=augment) # inference and training outputs | |||
t1 += time_sync() - t | |||
dt[1] += time_sync() - t2 | |||
# Compute loss | |||
if compute_loss: | |||
@@ -178,9 +178,9 @@ def run(data, | |||
# Run NMS | |||
targets[:, 2:] *= torch.Tensor([width, height, width, height]).to(device) # to pixels | |||
lb = [targets[targets[:, 0] == i, 1:] for i in range(nb)] if save_hybrid else [] # for autolabelling | |||
t = time_sync() | |||
t3 = time_sync() | |||
out = non_max_suppression(out, conf_thres, iou_thres, labels=lb, multi_label=True, agnostic=single_cls) | |||
t2 += time_sync() - t | |||
dt[2] += time_sync() - t3 | |||
# Statistics per image | |||
for si, pred in enumerate(out): | |||
@@ -247,7 +247,7 @@ def run(data, | |||
print(pf % (names[c], seen, nt[c], p[i], r[i], ap50[i], ap[i])) | |||
# Print speeds | |||
t = tuple(x / seen * 1E3 for x in (t0, t1, t2)) # speeds per image | |||
t = tuple(x / seen * 1E3 for x in dt) # speeds per image | |||
if not training: | |||
shape = (batch_size, 3, imgsz, imgsz) | |||
print(f'Speed: %.1fms pre-process, %.1fms inference, %.1fms NMS per image at shape {shape}' % t) |