|
|
@@ -47,6 +47,7 @@ class Loggers(): |
|
|
|
'metrics/precision', 'metrics/recall', 'metrics/mAP_0.5', 'metrics/mAP_0.5:0.95', # metrics |
|
|
|
'val/box_loss', 'val/obj_loss', 'val/cls_loss', # val loss |
|
|
|
'x/lr0', 'x/lr1', 'x/lr2'] # params |
|
|
|
self.best_keys = ['best/epoch', 'best/precision', 'best/recall', 'best/mAP_0.5', 'best/mAP_0.5:0.95',] |
|
|
|
for k in LOGGERS: |
|
|
|
setattr(self, k, None) # init empty logger dictionary |
|
|
|
self.csv = True # always log to csv |
|
|
@@ -125,6 +126,10 @@ class Loggers(): |
|
|
|
self.tb.add_scalar(k, v, epoch) |
|
|
|
|
|
|
|
if self.wandb: |
|
|
|
if best_fitness == fi: |
|
|
|
best_results = [epoch] + vals[3:7] |
|
|
|
for i, name in enumerate(self.best_keys): |
|
|
|
self.wandb.wandb_run.summary[name] = best_results[i] # log best results in the summary |
|
|
|
self.wandb.log(x) |
|
|
|
self.wandb.end_epoch(best_result=best_fitness == fi) |
|
|
|
|