|
|
@@ -11,8 +11,11 @@ import os |
|
|
|
import torch |
|
|
|
|
|
|
|
from models.yolo import Model |
|
|
|
from utils.general import set_logging |
|
|
|
from utils.google_utils import attempt_download |
|
|
|
|
|
|
|
set_logging() |
|
|
|
|
|
|
|
|
|
|
|
def create(name, pretrained, channels, classes): |
|
|
|
"""Creates a specified YOLOv5 model |
|
|
@@ -26,16 +29,19 @@ def create(name, pretrained, channels, classes): |
|
|
|
Returns: |
|
|
|
pytorch model |
|
|
|
""" |
|
|
|
config = os.path.join(os.path.dirname(__file__), 'models', '%s.yaml' % name) # model.yaml path |
|
|
|
config = os.path.join(os.path.dirname(__file__), 'models', f'{name}.yaml') # model.yaml path |
|
|
|
try: |
|
|
|
model = Model(config, channels, classes) |
|
|
|
if pretrained: |
|
|
|
ckpt = '%s.pt' % name # checkpoint filename |
|
|
|
attempt_download(ckpt) # download if not found locally |
|
|
|
state_dict = torch.load(ckpt, map_location=torch.device('cpu'))['model'].float().state_dict() # to FP32 |
|
|
|
fname = f'{name}.pt' # checkpoint filename |
|
|
|
attempt_download(fname) # download if not found locally |
|
|
|
ckpt = torch.load(fname, map_location=torch.device('cpu')) # load |
|
|
|
state_dict = ckpt['model'].float().state_dict() # to FP32 |
|
|
|
state_dict = {k: v for k, v in state_dict.items() if model.state_dict()[k].shape == v.shape} # filter |
|
|
|
model.load_state_dict(state_dict, strict=False) # load |
|
|
|
# model = model.autoshape() # cv2/PIL/np/torch inference: predictions = model(Image.open('image.jpg')) |
|
|
|
if len(ckpt['model'].names) == classes: |
|
|
|
model.names = ckpt['model'].names # set class names attribute |
|
|
|
# model = model.autoshape() # for autoshaping of PIL/cv2/np inputs and NMS |
|
|
|
return model |
|
|
|
|
|
|
|
except Exception as e: |
|
|
@@ -98,3 +104,7 @@ def yolov5x(pretrained=False, channels=3, classes=80): |
|
|
|
pytorch model |
|
|
|
""" |
|
|
|
return create('yolov5x', pretrained, channels, classes) |
|
|
|
|
|
|
|
|
|
|
|
if __name__ == '__main__': |
|
|
|
model = create(name='yolov5s', pretrained=True, channels=3, classes=80) # example |