Browse Source

Numerical stability fix for Albumentations (#3958)

modifyDataloader
Glenn Jocher GitHub 3 years ago
parent
commit
80299a57e2
No known key found for this signature in database GPG Key ID: 4AEE18F83AFDEB23
2 changed files with 12 additions and 14 deletions
  1. +1
    -1
      utils/datasets.py
  2. +11
    -13
      utils/general.py

+ 1
- 1
utils/datasets.py View File

@@ -550,7 +550,7 @@ class LoadImagesAndLabels(Dataset): # for training/testing

nl = len(labels) # number of labels
if nl:
labels[:, 1:5] = xyxy2xywhn(labels[:, 1:5], w=img.shape[1], h=img.shape[0]) # xyxy to xywh normalized
labels[:, 1:5] = xyxy2xywhn(labels[:, 1:5], w=img.shape[1], h=img.shape[0], clip=True, eps=1E-3)

if self.augment:
# Albumentations

+ 11
- 13
utils/general.py View File

@@ -396,10 +396,10 @@ def xywhn2xyxy(x, w=640, h=640, padw=0, padh=0):
return y


def xyxy2xywhn(x, w=640, h=640, clip=False):
def xyxy2xywhn(x, w=640, h=640, clip=False, eps=0.0):
# Convert nx4 boxes from [x1, y1, x2, y2] to [x, y, w, h] normalized where xy1=top-left, xy2=bottom-right
if clip:
clip_coords(x, (h, w)) # warning: inplace clip
clip_coords(x, (h - eps, w - eps)) # warning: inplace clip
y = x.clone() if isinstance(x, torch.Tensor) else np.copy(x)
y[:, 0] = ((x[:, 0] + x[:, 2]) / 2) / w # x center
y[:, 1] = ((x[:, 1] + x[:, 3]) / 2) / h # y center
@@ -458,18 +458,16 @@ def scale_coords(img1_shape, coords, img0_shape, ratio_pad=None):
return coords


def clip_coords(boxes, img_shape):
def clip_coords(boxes, shape):
# Clip bounding xyxy bounding boxes to image shape (height, width)
if isinstance(boxes, torch.Tensor):
boxes[:, 0].clamp_(0, img_shape[1]) # x1
boxes[:, 1].clamp_(0, img_shape[0]) # y1
boxes[:, 2].clamp_(0, img_shape[1]) # x2
boxes[:, 3].clamp_(0, img_shape[0]) # y2
else: # np.array
boxes[:, 0].clip(0, img_shape[1], out=boxes[:, 0]) # x1
boxes[:, 1].clip(0, img_shape[0], out=boxes[:, 1]) # y1
boxes[:, 2].clip(0, img_shape[1], out=boxes[:, 2]) # x2
boxes[:, 3].clip(0, img_shape[0], out=boxes[:, 3]) # y2
if isinstance(boxes, torch.Tensor): # faster individually
boxes[:, 0].clamp_(0, shape[1]) # x1
boxes[:, 1].clamp_(0, shape[0]) # y1
boxes[:, 2].clamp_(0, shape[1]) # x2
boxes[:, 3].clamp_(0, shape[0]) # y2
else: # np.array (faster grouped)
boxes[:, [0, 2]] = boxes[:, [0, 2]].clip(0, shape[1]) # x1, x2
boxes[:, [1, 3]] = boxes[:, [1, 3]].clip(0, shape[0]) # y1, y2


def non_max_suppression(prediction, conf_thres=0.25, iou_thres=0.45, classes=None, agnostic=False, multi_label=False,

Loading…
Cancel
Save