Przeglądaj źródła

hyperparameter evolution bug fix (#566)

5.0
Glenn Jocher 4 lat temu
rodzic
commit
8056fe2db8
1 zmienionych plików z 41 dodań i 21 usunięć
  1. +41
    -21
      train.py

+ 41
- 21
train.py Wyświetl plik

@@ -16,8 +16,7 @@ from utils.datasets import *
from utils.utils import *

# Hyperparameters
hyp = {'optimizer': 'SGD', # ['Adam', 'SGD', ...] from torch.optim
'lr0': 0.01, # initial learning rate (SGD=1E-2, Adam=1E-3)
hyp = {'lr0': 0.01, # initial learning rate (SGD=1E-2, Adam=1E-3)
'momentum': 0.937, # SGD momentum/Adam beta1
'weight_decay': 5e-4, # optimizer weight decay
'giou': 0.05, # GIoU loss gain
@@ -41,7 +40,7 @@ hyp = {'optimizer': 'SGD', # ['Adam', 'SGD', ...] from torch.optim
'mixup': 0.0} # image mixup (probability)


def train(hyp, tb_writer, opt, device):
def train(hyp, opt, device, tb_writer=None):
print(f'Hyperparameters {hyp}')
log_dir = tb_writer.log_dir if tb_writer else 'runs/evolution' # run directory
wdir = str(Path(log_dir) / 'weights') + os.sep # weights directory
@@ -102,7 +101,7 @@ def train(hyp, tb_writer, opt, device):
else:
pg0.append(v) # all else

if hyp['optimizer'] == 'Adam':
if opt.adam:
optimizer = optim.Adam(pg0, lr=hyp['lr0'], betas=(hyp['momentum'], 0.999)) # adjust beta1 to momentum
else:
optimizer = optim.SGD(pg0, lr=hyp['lr0'], momentum=hyp['momentum'], nesterov=True)
@@ -279,7 +278,7 @@ def train(hyp, tb_writer, opt, device):
imgs = F.interpolate(imgs, size=ns, mode='bilinear', align_corners=False)

# Autocast
with amp.autocast():
with amp.autocast(enabled=cuda):
# Forward
pred = model(imgs)

@@ -402,11 +401,11 @@ if __name__ == '__main__':
parser.add_argument('--data', type=str, default='data/coco128.yaml', help='data.yaml path')
parser.add_argument('--hyp', type=str, default='', help='hyp.yaml path (optional)')
parser.add_argument('--epochs', type=int, default=300)
parser.add_argument('--batch-size', type=int, default=16, help="Total batch size for all gpus.")
parser.add_argument('--batch-size', type=int, default=16, help='total batch size for all GPUs')
parser.add_argument('--img-size', nargs='+', type=int, default=[640, 640], help='train,test sizes')
parser.add_argument('--rect', action='store_true', help='rectangular training')
parser.add_argument('--resume', nargs='?', const='get_last', default=False,
help='resume from given path/to/last.pt, or most recent run if blank.')
help='resume from given path/last.pt, or most recent run if blank')
parser.add_argument('--nosave', action='store_true', help='only save final checkpoint')
parser.add_argument('--notest', action='store_true', help='only test final epoch')
parser.add_argument('--noautoanchor', action='store_true', help='disable autoanchor check')
@@ -418,6 +417,7 @@ if __name__ == '__main__':
parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
parser.add_argument('--multi-scale', action='store_true', help='vary img-size +/- 50%%')
parser.add_argument('--single-cls', action='store_true', help='train as single-class dataset')
parser.add_argument('--adam', action='store_true', help='use torch.optim.Adam() optimizer')
parser.add_argument('--sync-bn', action='store_true', help='use SyncBatchNorm, only available in DDP mode')
parser.add_argument('--local_rank', type=int, default=-1, help='DDP parameter, do not modify')
opt = parser.parse_args()
@@ -445,30 +445,52 @@ if __name__ == '__main__':
if opt.local_rank != -1:
assert torch.cuda.device_count() > opt.local_rank
torch.cuda.set_device(opt.local_rank)
device = torch.device("cuda", opt.local_rank)
device = torch.device('cuda', opt.local_rank)
dist.init_process_group(backend='nccl', init_method='env://') # distributed backend
opt.world_size = dist.get_world_size()
assert opt.batch_size % opt.world_size == 0, "Batch size is not a multiple of the number of devices given!"
assert opt.batch_size % opt.world_size == 0, '--batch-size must be multiple of CUDA device count'
opt.batch_size = opt.total_batch_size // opt.world_size

print(opt)

# Train
if not opt.evolve:
tb_writer = None
if opt.local_rank in [-1, 0]:
print('Start Tensorboard with "tensorboard --logdir=runs", view at http://localhost:6006/')
tb_writer = SummaryWriter(log_dir=increment_dir('runs/exp', opt.name))
else:
tb_writer = None

train(hyp, tb_writer, opt, device)
train(hyp, opt, device, tb_writer)

# Evolve hyperparameters (optional)
else:
assert opt.local_rank == -1, 'DDP mode not implemented for --evolve'
# Hyperparameter evolution metadata (mutation scale 0-1, lower_limit, upper_limit)
meta = {'lr0': (1, 1e-5, 1e-2), # initial learning rate (SGD=1E-2, Adam=1E-3)
'momentum': (0.1, 0.6, 0.98), # SGD momentum/Adam beta1
'weight_decay': (1, 0.0, 0.001), # optimizer weight decay
'giou': (1, 0.02, 0.2), # GIoU loss gain
'cls': (1, 0.2, 4.0), # cls loss gain
'cls_pw': (1, 0.5, 2.0), # cls BCELoss positive_weight
'obj': (1, 0.2, 4.0), # obj loss gain (scale with pixels)
'obj_pw': (1, 0.5, 2.0), # obj BCELoss positive_weight
'iou_t': (0, 0.1, 0.7), # IoU training threshold
'anchor_t': (1, 2.0, 8.0), # anchor-multiple threshold
'fl_gamma': (0, 0.0, 2.0), # focal loss gamma (efficientDet default gamma=1.5)
'hsv_h': (1, 0.0, 0.1), # image HSV-Hue augmentation (fraction)
'hsv_s': (1, 0.0, 0.8), # image HSV-Saturation augmentation (fraction)
'hsv_v': (1, 0.0, 0.8), # image HSV-Value augmentation (fraction)
'degrees': (1, 0.0, 45.0), # image rotation (+/- deg)
'translate': (1, 0.0, 0.9), # image translation (+/- fraction)
'scale': (1, 0.0, 0.9), # image scale (+/- gain)
'shear': (1, 0.0, 10.0), # image shear (+/- deg)
'perspective': (1, 0.0, 0.001), # image perspective (+/- fraction), range 0-0.001
'flipud': (0, 0.0, 1.0), # image flip up-down (probability)
'fliplr': (1, 0.0, 1.0), # image flip left-right (probability)
'mixup': (1, 0.0, 1.0)} # image mixup (probability)

tb_writer = None
assert opt.local_rank == -1, 'DDP mode not implemented for --evolve'
opt.notest, opt.nosave = True, True # only test/save final epoch
# ei = [isinstance(x, (int, float)) for x in hyp.values()] # evolvable indices
if opt.bucket:
os.system('gsutil cp gs://%s/evolve.txt .' % opt.bucket) # download evolve.txt if exists

@@ -490,8 +512,8 @@ if __name__ == '__main__':
mp, s = 0.9, 0.2 # mutation probability, sigma
npr = np.random
npr.seed(int(time.time()))
g = np.array([1, 1, 1, 1, 1, 1, 1, 0, .1, 1, 0, 1, 1, 1, 1, 1, 1, 1]) # gains
ng = len(g)
g = np.array([x[0] for x in meta.values()]) # gains 0-1
ng = len(meta)
v = np.ones(ng)
while all(v == 1): # mutate until a change occurs (prevent duplicates)
v = (g * (npr.random(ng) < mp) * npr.randn(ng) * npr.random() * s + 1).clip(0.3, 3.0)
@@ -499,13 +521,11 @@ if __name__ == '__main__':
hyp[k] = x[i + 7] * v[i] # mutate

# Clip to limits
keys = ['lr0', 'iou_t', 'momentum', 'weight_decay', 'hsv_s', 'hsv_v', 'translate', 'scale', 'fl_gamma']
limits = [(1e-5, 1e-2), (0.00, 0.70), (0.60, 0.98), (0, 0.001), (0, .9), (0, .9), (0, .9), (0, .9), (0, 3)]
for k, v in zip(keys, limits):
hyp[k] = np.clip(hyp[k], v[0], v[1])
for k, v in meta.items():
hyp[k] = np.clip(hyp[k], v[1], v[2])

# Train mutation
results = train(hyp.copy(), tb_writer, opt, device)
results = train(hyp.copy(), opt, device)

# Write mutation results
print_mutation(hyp, results, opt.bucket)

Ładowanie…
Anuluj
Zapisz