|
|
@@ -544,10 +544,9 @@ class AutoShape(nn.Module): |
|
|
|
g = (size / max(s)) # gain |
|
|
|
shape1.append([y * g for y in s]) |
|
|
|
imgs[i] = im if im.data.contiguous else np.ascontiguousarray(im) # update |
|
|
|
shape1 = [make_divisible(x, self.stride) for x in np.stack(shape1, 0).max(0)] # inference shape |
|
|
|
x = [letterbox(im, new_shape=shape1 if self.pt else size, auto=False)[0] for im in imgs] # pad |
|
|
|
x = np.stack(x, 0) if n > 1 else x[0][None] # stack |
|
|
|
x = np.ascontiguousarray(x.transpose((0, 3, 1, 2))) # BHWC to BCHW |
|
|
|
shape1 = [make_divisible(x, self.stride) if self.pt else size for x in np.array(shape1).max(0)] # inf shape |
|
|
|
x = [letterbox(im, new_shape=shape1, auto=False)[0] for im in imgs] # pad |
|
|
|
x = np.ascontiguousarray(np.array(x).transpose((0, 3, 1, 2))) # stack and BHWC to BCHW |
|
|
|
x = torch.from_numpy(x).to(p.device).type_as(p) / 255 # uint8 to fp16/32 |
|
|
|
t.append(time_sync()) |
|
|
|
|