|
|
@@ -106,8 +106,31 @@ def yolov5x(pretrained=False, channels=3, classes=80): |
|
|
|
return create('yolov5x', pretrained, channels, classes) |
|
|
|
|
|
|
|
|
|
|
|
def custom(model='path/to/model.pt'): |
|
|
|
"""YOLOv5-custom model from https://github.com/ultralytics/yolov5 |
|
|
|
|
|
|
|
Arguments (3 format options): |
|
|
|
model (str): 'path/to/model.pt' |
|
|
|
model (dict): torch.load('path/to/model.pt') |
|
|
|
model (nn.Module): 'torch.load('path/to/model.pt')['model'] |
|
|
|
|
|
|
|
Returns: |
|
|
|
pytorch model |
|
|
|
""" |
|
|
|
if isinstance(model, str): |
|
|
|
model = torch.load(model) # load checkpoint |
|
|
|
if isinstance(model, dict): |
|
|
|
model = model['model'] # load model |
|
|
|
|
|
|
|
hub_model = Model(model.yaml).to(next(model.parameters()).device) # create |
|
|
|
hub_model.load_state_dict(model.float().state_dict()) # load state_dict |
|
|
|
hub_model.names = model.names # class names |
|
|
|
return hub_model |
|
|
|
|
|
|
|
|
|
|
|
if __name__ == '__main__': |
|
|
|
model = create(name='yolov5s', pretrained=True, channels=3, classes=80) # example |
|
|
|
model = create(name='yolov5s', pretrained=True, channels=3, classes=80) # pretrained example |
|
|
|
# model = custom(model='path/to/model.pt') # custom example |
|
|
|
model = model.autoshape() # for PIL/cv2/np inputs and NMS |
|
|
|
|
|
|
|
# Verify inference |