Selaa lähdekoodia

classifier, export, torch seed updates

5.0
Glenn Jocher 4 vuotta sitten
vanhempi
commit
883924d9dc
3 muutettua tiedostoa jossa 23 lisäystä ja 19 poistoa
  1. +11
    -4
      models/export.py
  2. +2
    -3
      utils/general.py
  3. +10
    -12
      utils/torch_utils.py

+ 11
- 4
models/export.py Näytä tiedosto

@@ -6,6 +6,7 @@ Usage:

import argparse
import sys
import time

sys.path.append('./') # to run '$ python *.py' files in subdirectories

@@ -15,7 +16,7 @@ import torch.nn as nn
import models
from models.experimental import attempt_load
from utils.activations import Hardswish
from utils.general import set_logging
from utils.general import set_logging, check_img_size

if __name__ == '__main__':
parser = argparse.ArgumentParser()
@@ -26,16 +27,22 @@ if __name__ == '__main__':
opt.img_size *= 2 if len(opt.img_size) == 1 else 1 # expand
print(opt)
set_logging()
t = time.time()

# Input
img = torch.zeros((opt.batch_size, 3, *opt.img_size)) # image size(1,3,320,192) iDetection

# Load PyTorch model
model = attempt_load(opt.weights, map_location=torch.device('cpu')) # load FP32 model
labels = model.names

# Checks
gs = int(max(model.stride)) # grid size (max stride)
opt.img_size = [check_img_size(x, gs) for x in opt.img_size] # verify img_size are gs-multiples

# Update model
for k, m in model.named_modules():
m._non_persistent_buffers_set = set() # pytorch 1.6.0 compatability
m._non_persistent_buffers_set = set() # pytorch 1.6.0 compatibility
if isinstance(m, models.common.Conv) and isinstance(m.act, nn.Hardswish):
m.act = Hardswish() # assign activation
# if isinstance(m, models.yolo.Detect):
@@ -76,7 +83,7 @@ if __name__ == '__main__':

print('\nStarting CoreML export with coremltools %s...' % ct.__version__)
# convert model from torchscript and apply pixel scaling as per detect.py
model = ct.convert(ts, inputs=[ct.ImageType(name='images', shape=img.shape, scale=1 / 255.0, bias=[0, 0, 0])])
model = ct.convert(ts, inputs=[ct.ImageType(name='image', shape=img.shape, scale=1 / 255.0, bias=[0, 0, 0])])
f = opt.weights.replace('.pt', '.mlmodel') # filename
model.save(f)
print('CoreML export success, saved as %s' % f)
@@ -84,4 +91,4 @@ if __name__ == '__main__':
print('CoreML export failure: %s' % e)

# Finish
print('\nExport complete. Visualize with https://github.com/lutzroeder/netron.')
print('\nExport complete (%.2fs). Visualize with https://github.com/lutzroeder/netron.' % (time.time() - t))

+ 2
- 3
utils/general.py Näytä tiedosto

@@ -23,8 +23,7 @@ from scipy.signal import butter, filtfilt
from tqdm import tqdm

from utils.google_utils import gsutil_getsize
from utils.torch_utils import init_seeds as init_torch_seeds
from utils.torch_utils import is_parallel
from utils.torch_utils import is_parallel, init_torch_seeds

# Set printoptions
torch.set_printoptions(linewidth=320, precision=5, profile='long')
@@ -56,7 +55,7 @@ def set_logging(rank=-1):
def init_seeds(seed=0):
random.seed(seed)
np.random.seed(seed)
init_torch_seeds(seed=seed)
init_torch_seeds(seed)


def get_latest_run(search_dir='./runs'):

+ 10
- 12
utils/torch_utils.py Näytä tiedosto

@@ -8,12 +8,11 @@ import torch
import torch.backends.cudnn as cudnn
import torch.nn as nn
import torch.nn.functional as F
import torchvision.models as models

logger = logging.getLogger(__name__)


def init_seeds(seed=0):
def init_torch_seeds(seed=0):
torch.manual_seed(seed)

# Speed-reproducibility tradeoff https://pytorch.org/docs/stable/notes/randomness.html
@@ -152,16 +151,15 @@ def model_info(model, verbose=False):

def load_classifier(name='resnet101', n=2):
# Loads a pretrained model reshaped to n-class output
model = models.__dict__[name](pretrained=True)

# Display model properties
input_size = [3, 224, 224]
input_space = 'RGB'
input_range = [0, 1]
mean = [0.485, 0.456, 0.406]
std = [0.229, 0.224, 0.225]
for x in ['input_size', 'input_space', 'input_range', 'mean', 'std']:
print(x + ' =', eval(x))
import torchvision
model = torchvision.models.__dict__[name](pretrained=True)

# ResNet model properties
# input_size = [3, 224, 224]
# input_space = 'RGB'
# input_range = [0, 1]
# mean = [0.485, 0.456, 0.406]
# std = [0.229, 0.224, 0.225]

# Reshape output to n classes
filters = model.fc.weight.shape[1]

Loading…
Peruuta
Tallenna