Kaynağa Gözat

AutoAnchor bug fix #72

5.0
Glenn Jocher 4 yıl önce
ebeveyn
işleme
8b26e89006
2 değiştirilmiş dosya ile 7 ekleme ve 6 silme
  1. +1
    -2
      train.py
  2. +6
    -4
      utils/utils.py

+ 1
- 2
train.py Dosyayı Görüntüle

@@ -4,7 +4,6 @@ import torch.distributed as dist
import torch.nn.functional as F
import torch.optim as optim
import torch.optim.lr_scheduler as lr_scheduler
import yaml
from torch.utils.tensorboard import SummaryWriter

import test # import test.py to get mAP after each epoch
@@ -200,7 +199,7 @@ def train(hyp):
tb_writer.add_histogram('classes', c, 0)

# Check anchors
check_best_possible_recall(dataset, anchors=model.model[-1].anchor_grid, thr=hyp['anchor_t'])
check_best_possible_recall(dataset, anchors=model.model[-1].anchor_grid, thr=hyp['anchor_t'], imgsz=imgsz)

# Exponential moving average
ema = torch_utils.ModelEMA(model)

+ 6
- 4
utils/utils.py Dosyayı Görüntüle

@@ -52,15 +52,17 @@ def check_img_size(img_size, s=32):
return make_divisible(img_size, s) # nearest gs-multiple


def check_best_possible_recall(dataset, anchors, thr):
def check_best_possible_recall(dataset, anchors, thr=4.0, imgsz=640):
# Check best possible recall of dataset with current anchors
wh = torch.tensor(np.concatenate([l[:, 3:5] * s for s, l in zip(dataset.shapes, dataset.labels)])).float() # wh
shapes = imgsz * dataset.shapes / dataset.shapes.max(1, keepdims=True)
wh = torch.tensor(np.concatenate([l[:, 3:5] * s for s, l in zip(shapes, dataset.labels)])).float() # wh
ratio = wh[:, None] / anchors.view(-1, 2).cpu()[None] # ratio
m = torch.max(ratio, 1. / ratio).max(2)[0] # max ratio
bpr = (m.min(1)[0] < thr).float().mean() # best possible recall
mr = (m < thr).float().mean() # match ratio
print(('Label width-height:' + '%10s' * 6) % ('n', 'mean', 'min', 'max', 'matching', 'recall'))
print((' ' + '%10.4g' * 6) % (wh.shape[0], wh.mean(), wh.min(), wh.max(), mr, bpr))
print(('AutoAnchor labels:' + '%10s' * 6) % ('n', 'mean', 'min', 'max', 'matching', 'recall'))
print((' ' + '%10.4g' * 6) % (wh.shape[0], wh.mean(), wh.min(), wh.max(), mr, bpr))

assert bpr > 0.9, 'Best possible recall %.3g (BPR) below 0.9 threshold. Training cancelled. ' \
'Compute new anchors with utils.utils.kmeans_anchors() and update model before training.' % bpr


Yükleniyor…
İptal
Kaydet