瀏覽代碼

ONNX export update

5.0
Glenn Jocher 4 年之前
父節點
當前提交
8f1755290c
共有 2 個檔案被更改,包括 36 行新增6 行删除
  1. +7
    -5
      models/onnx_export.py
  2. +29
    -1
      models/yolo.py

+ 7
- 5
models/onnx_export.py 查看文件

@@ -13,25 +13,27 @@ from models.common import *

if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--weights', type=str, default='./weights/yolov5s.pt', help='weights path')
parser.add_argument('--img-size', type=int, default=640, help='inference size (pixels)')
parser.add_argument('--weights', type=str, default='./yolov5s.pt', help='weights path')
parser.add_argument('--img-size', nargs='+', type=int, default=[640, 640], help='image size')
parser.add_argument('--batch-size', type=int, default=1, help='batch size')
opt = parser.parse_args()
print(opt)

# Parameters
f = opt.weights.replace('.pt', '.onnx') # onnx filename
img = torch.zeros((opt.batch_size, 3, opt.img_size, opt.img_size)) # image size, (1, 3, 320, 192) iDetection
img = torch.zeros((opt.batch_size, 3, *opt.img_size)) # image size, (1, 3, 320, 192) iDetection

# Load pytorch model
google_utils.attempt_download(opt.weights)
model = torch.load(opt.weights)['model']
model.eval()
# model.fuse()
model.fuse()

# Export to onnx
model.model[-1].export = True # set Detect() layer export=True
torch.onnx.export(model, img, f, verbose=False, opset_version=11)
_ = model(img) # dry run
torch.onnx.export(model, img, f, verbose=False, opset_version=11, input_names=['images'],
output_names=['output']) # output_names=['classes', 'boxes']

# Check onnx model
model = onnx.load(f) # load onnx model

+ 29
- 1
models/yolo.py 查看文件

@@ -20,7 +20,7 @@ class Detect(nn.Module):
self.export = False # onnx export

def forward(self, x):
x = x.copy() # for profiling
# x = x.copy() # for profiling
z = [] # inference output
self.training |= self.export
for i in range(self.nl):
@@ -38,6 +38,34 @@ class Detect(nn.Module):

return x if self.training else (torch.cat(z, 1), x)

def forward_(self, x):
if hasattr(self, 'nx'):
z = [] # inference output
for (y, gi, agi, si, nyi, nxi) in zip(x, self.grid, self.ag, self.stride, self.ny, self.nx):
m = self.na * nxi * nyi
y = y.view(1, self.na, self.no, nyi, nxi).permute(0, 1, 3, 4, 2).contiguous().view(m, self.no).sigmoid()

xy = (y[..., 0:2] * 2. - 0.5 + gi) * si # xy
wh = (y[..., 2:4] * 2) ** 2 * agi # wh
p_cls = y[:, 4:5] if self.nc == 1 else y[:, 5:self.no] * y[:, 4:5] # conf
z.append([p_cls, xy, wh])

z = [torch.cat(x, 0) for x in zip(*z)]
return z[0], torch.cat(z[1:3], 1) # scores, boxes: 3780x80, 3780x4

else: # dry run
self.nx = [0] * self.nl
self.ny = [0] * self.nl
self.ag = [0] * self.nl
for i in range(self.nl):
bs, _, ny, nx = x[i].shape
m = self.na * nx * ny
self.grid[i] = self._make_grid(nx, ny).repeat(1, self.na, 1, 1, 1).view(m, 2) / torch.tensor([[nx, ny]])
self.ag[i] = self.anchor_grid[i].repeat(1, 1, nx, ny, 1).view(m, 2)
self.nx[i] = nx
self.ny[i] = ny
return None

@staticmethod
def _make_grid(nx=20, ny=20):
yv, xv = torch.meshgrid([torch.arange(ny), torch.arange(nx)])

Loading…
取消
儲存