|
|
@@ -110,7 +110,7 @@ def run(weights=ROOT / 'yolov5s.pt', # model.pt path(s) |
|
|
|
vid_path, vid_writer = [None] * bs, [None] * bs |
|
|
|
|
|
|
|
# Run inference |
|
|
|
model.warmup(imgsz=(1, 3, *imgsz), half=half) # warmup |
|
|
|
model.warmup(imgsz=(1 if pt else bs, 3, *imgsz), half=half) # warmup |
|
|
|
dt, seen = [0.0, 0.0, 0.0], 0 |
|
|
|
for path, im, im0s, vid_cap, s in dataset: |
|
|
|
t1 = time_sync() |
|
|
@@ -175,9 +175,6 @@ def run(weights=ROOT / 'yolov5s.pt', # model.pt path(s) |
|
|
|
if save_crop: |
|
|
|
save_one_box(xyxy, imc, file=save_dir / 'crops' / names[c] / f'{p.stem}.jpg', BGR=True) |
|
|
|
|
|
|
|
# Print time (inference-only) |
|
|
|
LOGGER.info(f'{s}Done. ({t3 - t2:.3f}s)') |
|
|
|
|
|
|
|
# Stream results |
|
|
|
im0 = annotator.result() |
|
|
|
if view_img: |
|
|
@@ -203,6 +200,9 @@ def run(weights=ROOT / 'yolov5s.pt', # model.pt path(s) |
|
|
|
vid_writer[i] = cv2.VideoWriter(save_path, cv2.VideoWriter_fourcc(*'mp4v'), fps, (w, h)) |
|
|
|
vid_writer[i].write(im0) |
|
|
|
|
|
|
|
# Print time (inference-only) |
|
|
|
LOGGER.info(f'{s}Done. ({t3 - t2:.3f}s)') |
|
|
|
|
|
|
|
# Print results |
|
|
|
t = tuple(x / seen * 1E3 for x in dt) # speeds per image |
|
|
|
LOGGER.info(f'Speed: %.1fms pre-process, %.1fms inference, %.1fms NMS per image at shape {(1, 3, *imgsz)}' % t) |