|
|
@@ -19,6 +19,7 @@ TensorFlow.js | `tfjs` | yolov5s_web_model/ |
|
|
|
Requirements: |
|
|
|
$ pip install -r requirements.txt coremltools onnx onnx-simplifier onnxruntime openvino-dev tensorflow-cpu # CPU |
|
|
|
$ pip install -r requirements.txt coremltools onnx onnx-simplifier onnxruntime-gpu openvino-dev tensorflow # GPU |
|
|
|
$ pip install -U nvidia-tensorrt --index-url https://pypi.ngc.nvidia.com # TensorRT |
|
|
|
|
|
|
|
Usage: |
|
|
|
$ python utils/benchmarks.py --weights yolov5s.pt --img 640 |
|
|
@@ -41,20 +42,29 @@ import export |
|
|
|
import val |
|
|
|
from utils import notebook_init |
|
|
|
from utils.general import LOGGER, print_args |
|
|
|
from utils.torch_utils import select_device |
|
|
|
|
|
|
|
|
|
|
|
def run(weights=ROOT / 'yolov5s.pt', # weights path |
|
|
|
imgsz=640, # inference size (pixels) |
|
|
|
batch_size=1, # batch size |
|
|
|
data=ROOT / 'data/coco128.yaml', # dataset.yaml path |
|
|
|
device='', # cuda device, i.e. 0 or 0,1,2,3 or cpu |
|
|
|
half=False, # use FP16 half-precision inference |
|
|
|
): |
|
|
|
y, t = [], time.time() |
|
|
|
formats = export.export_formats() |
|
|
|
for i, (name, f, suffix) in formats.iterrows(): # index, (name, file, suffix) |
|
|
|
device = select_device(device) |
|
|
|
for i, (name, f, suffix, gpu) in formats.iterrows(): # index, (name, file, suffix, gpu-capable) |
|
|
|
try: |
|
|
|
w = weights if f == '-' else export.run(weights=weights, imgsz=[imgsz], include=[f], device='cpu')[-1] |
|
|
|
if device.type != 'cpu': |
|
|
|
assert gpu, f'{name} inference not supported on GPU' |
|
|
|
if f == '-': |
|
|
|
w = weights # PyTorch format |
|
|
|
else: |
|
|
|
w = export.run(weights=weights, imgsz=[imgsz], include=[f], device=device, half=half)[-1] # all others |
|
|
|
assert suffix in str(w), 'export failed' |
|
|
|
result = val.run(data, w, batch_size, imgsz=imgsz, plots=False, device='cpu', task='benchmark') |
|
|
|
result = val.run(data, w, batch_size, imgsz, plots=False, device=device, task='benchmark', half=half) |
|
|
|
metrics = result[0] # metrics (mp, mr, map50, map, *losses(box, obj, cls)) |
|
|
|
speeds = result[2] # times (preprocess, inference, postprocess) |
|
|
|
y.append([name, metrics[3], speeds[1]]) # mAP, t_inference |
|
|
@@ -78,6 +88,8 @@ def parse_opt(): |
|
|
|
parser.add_argument('--imgsz', '--img', '--img-size', type=int, default=640, help='inference size (pixels)') |
|
|
|
parser.add_argument('--batch-size', type=int, default=1, help='batch size') |
|
|
|
parser.add_argument('--data', type=str, default=ROOT / 'data/coco128.yaml', help='dataset.yaml path') |
|
|
|
parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu') |
|
|
|
parser.add_argument('--half', action='store_true', help='use FP16 half-precision inference') |
|
|
|
opt = parser.parse_args() |
|
|
|
print_args(FILE.stem, opt) |
|
|
|
return opt |