|
|
|
|
|
|
|
|
optim.SGD(pg0, lr=hyp['lr0'], momentum=hyp['momentum'], nesterov=True) |
|
|
optim.SGD(pg0, lr=hyp['lr0'], momentum=hyp['momentum'], nesterov=True) |
|
|
optimizer.add_param_group({'params': pg1, 'weight_decay': hyp['weight_decay']}) # add pg1 with weight_decay |
|
|
optimizer.add_param_group({'params': pg1, 'weight_decay': hyp['weight_decay']}) # add pg1 with weight_decay |
|
|
optimizer.add_param_group({'params': pg2}) # add pg2 (biases) |
|
|
optimizer.add_param_group({'params': pg2}) # add pg2 (biases) |
|
|
|
|
|
# Scheduler https://arxiv.org/pdf/1812.01187.pdf |
|
|
|
|
|
lf = lambda x: (((1 + math.cos(x * math.pi / epochs)) / 2) ** 1.0) * 0.9 + 0.1 # cosine |
|
|
|
|
|
scheduler = lr_scheduler.LambdaLR(optimizer, lr_lambda=lf) |
|
|
print('Optimizer groups: %g .bias, %g conv.weight, %g other' % (len(pg2), len(pg1), len(pg0))) |
|
|
print('Optimizer groups: %g .bias, %g conv.weight, %g other' % (len(pg2), len(pg1), len(pg0))) |
|
|
del pg0, pg1, pg2 |
|
|
del pg0, pg1, pg2 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if mixed_precision: |
|
|
if mixed_precision: |
|
|
model, optimizer = amp.initialize(model, optimizer, opt_level='O1', verbosity=0) |
|
|
model, optimizer = amp.initialize(model, optimizer, opt_level='O1', verbosity=0) |
|
|
|
|
|
|
|
|
# Scheduler https://arxiv.org/pdf/1812.01187.pdf |
|
|
|
|
|
lf = lambda x: (((1 + math.cos(x * math.pi / epochs)) / 2) ** 1.0) * 0.9 + 0.1 # cosine |
|
|
|
|
|
scheduler = lr_scheduler.LambdaLR(optimizer, lr_lambda=lf) |
|
|
|
|
|
|
|
|
|
|
|
scheduler.last_epoch = start_epoch - 1 # do not move |
|
|
scheduler.last_epoch = start_epoch - 1 # do not move |
|
|
# https://discuss.pytorch.org/t/a-problem-occured-when-resuming-an-optimizer/28822 |
|
|
# https://discuss.pytorch.org/t/a-problem-occured-when-resuming-an-optimizer/28822 |
|
|
# plot_lr_scheduler(optimizer, scheduler, epochs) |
|
|
# plot_lr_scheduler(optimizer, scheduler, epochs) |