瀏覽代碼

New CSV Logger (#4148)

* New CSV Logger

* cleanup

* move batch plots into Logger

* rename comment

* Remove total loss from progress bar

* mloss :-1 bug fix

* Update plot_results()

* Update plot_results()

* plot_results bug fix
modifyDataloader
Glenn Jocher GitHub 3 年之前
父節點
當前提交
96e36a7c91
沒有發現已知的金鑰在資料庫的簽署中 GPG Key ID: 4AEE18F83AFDEB23
共有 6 個文件被更改,包括 68 次插入109 次删除
  1. +1
    -0
      .gitignore
  2. +11
    -29
      train.py
  3. +38
    -25
      utils/loggers/__init__.py
  4. +1
    -2
      utils/loss.py
  5. +16
    -52
      utils/plots.py
  6. +1
    -1
      val.py

+ 1
- 0
.gitignore 查看文件

@@ -31,6 +31,7 @@ data/*
!data/*.sh

results*.txt
results*.csv

# Datasets -------------------------------------------------------------------------------------------------------------
coco/

+ 11
- 29
train.py 查看文件

@@ -12,7 +12,6 @@ import sys
import time
from copy import deepcopy
from pathlib import Path
from threading import Thread

import math
import numpy as np
@@ -38,7 +37,7 @@ from utils.general import labels_to_class_weights, increment_path, labels_to_ima
check_requirements, print_mutation, set_logging, one_cycle, colorstr
from utils.google_utils import attempt_download
from utils.loss import ComputeLoss
from utils.plots import plot_images, plot_labels, plot_results, plot_evolution
from utils.plots import plot_labels, plot_evolution
from utils.torch_utils import ModelEMA, select_device, intersect_dicts, torch_distributed_zero_first, de_parallel
from utils.loggers.wandb.wandb_utils import check_wandb_resume
from utils.metrics import fitness
@@ -61,7 +60,7 @@ def train(hyp, # path/to/hyp.yaml or hyp dictionary
# Directories
w = save_dir / 'weights' # weights dir
w.mkdir(parents=True, exist_ok=True) # make dir
last, best, results_file = w / 'last.pt', w / 'best.pt', save_dir / 'results.txt'
last, best = w / 'last.pt', w / 'best.pt'

# Hyperparameters
if isinstance(hyp, str):
@@ -88,7 +87,7 @@ def train(hyp, # path/to/hyp.yaml or hyp dictionary

# Loggers
if RANK in [-1, 0]:
loggers = Loggers(save_dir, results_file, weights, opt, hyp, data_dict, LOGGER).start() # loggers dict
loggers = Loggers(save_dir, weights, opt, hyp, data_dict, LOGGER).start() # loggers dict
if loggers.wandb and resume:
weights, epochs, hyp, data_dict = opt.weights, opt.epochs, opt.hyp, loggers.wandb.data_dict

@@ -167,10 +166,6 @@ def train(hyp, # path/to/hyp.yaml or hyp dictionary
ema.ema.load_state_dict(ckpt['ema'].float().state_dict())
ema.updates = ckpt['updates']

# Results
if ckpt.get('training_results') is not None:
results_file.write_text(ckpt['training_results']) # write results.txt

# Epochs
start_epoch = ckpt['epoch'] + 1
if resume:
@@ -275,11 +270,11 @@ def train(hyp, # path/to/hyp.yaml or hyp dictionary
# b = int(random.uniform(0.25 * imgsz, 0.75 * imgsz + gs) // gs * gs)
# dataset.mosaic_border = [b - imgsz, -b] # height, width borders

mloss = torch.zeros(4, device=device) # mean losses
mloss = torch.zeros(3, device=device) # mean losses
if RANK != -1:
train_loader.sampler.set_epoch(epoch)
pbar = enumerate(train_loader)
LOGGER.info(('\n' + '%10s' * 8) % ('Epoch', 'gpu_mem', 'box', 'obj', 'cls', 'total', 'labels', 'img_size'))
LOGGER.info(('\n' + '%10s' * 7) % ('Epoch', 'gpu_mem', 'box', 'obj', 'cls', 'labels', 'img_size'))
if RANK in [-1, 0]:
pbar = tqdm(pbar, total=nb) # progress bar
optimizer.zero_grad()
@@ -327,20 +322,13 @@ def train(hyp, # path/to/hyp.yaml or hyp dictionary
ema.update(model)
last_opt_step = ni

# Print
# Log
if RANK in [-1, 0]:
mloss = (mloss * i + loss_items) / (i + 1) # update mean losses
mem = f'{torch.cuda.memory_reserved() / 1E9 if torch.cuda.is_available() else 0:.3g}G' # (GB)
s = ('%10s' * 2 + '%10.4g' * 6) % (
f'{epoch}/{epochs - 1}', mem, *mloss, targets.shape[0], imgs.shape[-1])
pbar.set_description(s)

# Plot
if plots:
if ni < 3:
f = save_dir / f'train_batch{ni}.jpg' # filename
Thread(target=plot_images, args=(imgs, targets, paths, f), daemon=True).start()
loggers.on_train_batch_end(ni, model, imgs)
pbar.set_description(('%10s' * 2 + '%10.4g' * 5) % (
f'{epoch}/{epochs - 1}', mem, *mloss, targets.shape[0], imgs.shape[-1]))
loggers.on_train_batch_end(ni, model, imgs, targets, paths, plots)

# end batch ------------------------------------------------------------------------------------------------

@@ -371,13 +359,12 @@ def train(hyp, # path/to/hyp.yaml or hyp dictionary
fi = fitness(np.array(results).reshape(1, -1)) # weighted combination of [P, R, mAP@.5, mAP@.5-.95]
if fi > best_fitness:
best_fitness = fi
loggers.on_train_val_end(mloss, results, lr, epoch, s, best_fitness, fi)
loggers.on_train_val_end(mloss, results, lr, epoch, best_fitness, fi)

# Save model
if (not nosave) or (final_epoch and not evolve): # if save
ckpt = {'epoch': epoch,
'best_fitness': best_fitness,
'training_results': results_file.read_text(),
'model': deepcopy(de_parallel(model)).half(),
'ema': deepcopy(ema.ema).half(),
'updates': ema.updates,
@@ -395,9 +382,6 @@ def train(hyp, # path/to/hyp.yaml or hyp dictionary
# end training -----------------------------------------------------------------------------------------------------
if RANK in [-1, 0]:
LOGGER.info(f'{epoch - start_epoch + 1} epochs completed in {(time.time() - t0) / 3600:.3f} hours.\n')
if plots:
plot_results(save_dir=save_dir) # save as results.png

if not evolve:
if is_coco: # COCO dataset
for m in [last, best] if best.exists() else [last]: # speed, mAP tests
@@ -411,13 +395,11 @@ def train(hyp, # path/to/hyp.yaml or hyp dictionary
save_dir=save_dir,
save_json=True,
plots=False)

# Strip optimizers
for f in last, best:
if f.exists():
strip_optimizer(f) # strip optimizers

loggers.on_train_end(last, best)
loggers.on_train_end(last, best, plots)

torch.cuda.empty_cache()
return results

+ 38
- 25
utils/loggers/__init__.py 查看文件

@@ -1,15 +1,17 @@
# YOLOv5 experiment logging utils

import warnings
from threading import Thread

import torch
from torch.utils.tensorboard import SummaryWriter

from utils.general import colorstr, emojis
from utils.loggers.wandb.wandb_utils import WandbLogger
from utils.plots import plot_images, plot_results
from utils.torch_utils import de_parallel

LOGGERS = ('txt', 'tb', 'wandb') # text-file, TensorBoard, Weights & Biases
LOGGERS = ('csv', 'tb', 'wandb') # text-file, TensorBoard, Weights & Biases

try:
import wandb
@@ -21,10 +23,8 @@ except (ImportError, AssertionError):

class Loggers():
# YOLOv5 Loggers class
def __init__(self, save_dir=None, results_file=None, weights=None, opt=None, hyp=None,
data_dict=None, logger=None, include=LOGGERS):
def __init__(self, save_dir=None, weights=None, opt=None, hyp=None, data_dict=None, logger=None, include=LOGGERS):
self.save_dir = save_dir
self.results_file = results_file
self.weights = weights
self.opt = opt
self.hyp = hyp
@@ -35,7 +35,7 @@ class Loggers():
setattr(self, k, None) # init empty logger dictionary

def start(self):
self.txt = True # always log to txt
self.csv = True # always log to csv

# Message
try:
@@ -63,15 +63,19 @@ class Loggers():

return self

def on_train_batch_end(self, ni, model, imgs):
def on_train_batch_end(self, ni, model, imgs, targets, paths, plots):
# Callback runs on train batch end
if ni == 0:
with warnings.catch_warnings():
warnings.simplefilter('ignore') # suppress jit trace warning
self.tb.add_graph(torch.jit.trace(de_parallel(model), imgs[0:1], strict=False), [])
if self.wandb and ni == 10:
files = sorted(self.save_dir.glob('train*.jpg'))
self.wandb.log({'Mosaics': [wandb.Image(str(f), caption=f.name) for f in files if f.exists()]})
if plots:
if ni == 0:
with warnings.catch_warnings():
warnings.simplefilter('ignore') # suppress jit trace warning
self.tb.add_graph(torch.jit.trace(de_parallel(model), imgs[0:1], strict=False), [])
if ni < 3:
f = self.save_dir / f'train_batch{ni}.jpg' # filename
Thread(target=plot_images, args=(imgs, targets, paths, f), daemon=True).start()
if self.wandb and ni == 10:
files = sorted(self.save_dir.glob('train*.jpg'))
self.wandb.log({'Mosaics': [wandb.Image(str(f), caption=f.name) for f in files if f.exists()]})

def on_train_epoch_end(self, epoch):
# Callback runs on train epoch end
@@ -89,21 +93,28 @@ class Loggers():
files = sorted(self.save_dir.glob('val*.jpg'))
self.wandb.log({"Validation": [wandb.Image(str(f), caption=f.name) for f in files]})

def on_train_val_end(self, mloss, results, lr, epoch, s, best_fitness, fi):
# Callback runs on validation end during training
vals = list(mloss[:-1]) + list(results) + lr
tags = ['train/box_loss', 'train/obj_loss', 'train/cls_loss', # train loss
'metrics/precision', 'metrics/recall', 'metrics/mAP_0.5', 'metrics/mAP_0.5:0.95',
def on_train_val_end(self, mloss, results, lr, epoch, best_fitness, fi):
# Callback runs on val end during training
vals = list(mloss) + list(results) + lr
keys = ['train/box_loss', 'train/obj_loss', 'train/cls_loss', # train loss
'metrics/precision', 'metrics/recall', 'metrics/mAP_0.5', 'metrics/mAP_0.5:0.95', # metrics
'val/box_loss', 'val/obj_loss', 'val/cls_loss', # val loss
'x/lr0', 'x/lr1', 'x/lr2'] # params
if self.txt:
with open(self.results_file, 'a') as f:
f.write(s + '%10.4g' * 7 % results + '\n') # append metrics, val_loss
x = {k: v for k, v in zip(keys, vals)} # dict

if self.csv:
file = self.save_dir / 'results.csv'
n = len(x) + 1 # number of cols
s = '' if file.exists() else (('%20s,' * n % tuple(['epoch'] + keys)).rstrip(',') + '\n') # add header
with open(file, 'a') as f:
f.write(s + ('%20.5g,' * n % tuple([epoch] + vals)).rstrip(',') + '\n')

if self.tb:
for x, tag in zip(vals, tags):
self.tb.add_scalar(tag, x, epoch) # TensorBoard
for k, v in x.items():
self.tb.add_scalar(k, v, epoch) # TensorBoard

if self.wandb:
self.wandb.log({k: v for k, v in zip(tags, vals)})
self.wandb.log(x)
self.wandb.end_epoch(best_result=best_fitness == fi)

def on_model_save(self, last, epoch, final_epoch, best_fitness, fi):
@@ -112,8 +123,10 @@ class Loggers():
if ((epoch + 1) % self.opt.save_period == 0 and not final_epoch) and self.opt.save_period != -1:
self.wandb.log_model(last.parent, self.opt, epoch, fi, best_model=best_fitness == fi)

def on_train_end(self, last, best):
def on_train_end(self, last, best, plots):
# Callback runs on training end
if plots:
plot_results(dir=self.save_dir) # save results.png
files = ['results.png', 'confusion_matrix.png', *[f'{x}_curve.png' for x in ('F1', 'PR', 'P', 'R')]]
files = [(self.save_dir / f) for f in files if (self.save_dir / f).exists()] # filter
if self.wandb:

+ 1
- 2
utils/loss.py 查看文件

@@ -162,8 +162,7 @@ class ComputeLoss:
lcls *= self.hyp['cls']
bs = tobj.shape[0] # batch size

loss = lbox + lobj + lcls
return loss * bs, torch.cat((lbox, lobj, lcls, loss)).detach()
return (lbox + lobj + lcls) * bs, torch.cat((lbox, lobj, lcls)).detach()

def build_targets(self, p, targets):
# Build targets for compute_loss(), input targets(image,class,x,y,w,h)

+ 16
- 52
utils/plots.py 查看文件

@@ -1,7 +1,5 @@
# Plotting utils

import glob
import os
from copy import copy
from pathlib import Path

@@ -387,63 +385,29 @@ def profile_idetection(start=0, stop=0, labels=(), save_dir=''):
plt.savefig(Path(save_dir) / 'idetection_profile.png', dpi=200)


def plot_results_overlay(start=0, stop=0): # from utils.plots import *; plot_results_overlay()
# Plot training 'results*.txt', overlaying train and val losses
s = ['train', 'train', 'train', 'Precision', 'mAP@0.5', 'val', 'val', 'val', 'Recall', 'mAP@0.5:0.95'] # legends
t = ['Box', 'Objectness', 'Classification', 'P-R', 'mAP-F1'] # titles
for f in sorted(glob.glob('results*.txt') + glob.glob('../../Downloads/results*.txt')):
results = np.loadtxt(f, usecols=[2, 3, 4, 8, 9, 12, 13, 14, 10, 11], ndmin=2).T
n = results.shape[1] # number of rows
x = range(start, min(stop, n) if stop else n)
fig, ax = plt.subplots(1, 5, figsize=(14, 3.5), tight_layout=True)
ax = ax.ravel()
for i in range(5):
for j in [i, i + 5]:
y = results[j, x]
ax[i].plot(x, y, marker='.', label=s[j])
# y_smooth = butter_lowpass_filtfilt(y)
# ax[i].plot(x, np.gradient(y_smooth), marker='.', label=s[j])

ax[i].set_title(t[i])
ax[i].legend()
ax[i].set_ylabel(f) if i == 0 else None # add filename
fig.savefig(f.replace('.txt', '.png'), dpi=200)


def plot_results(start=0, stop=0, bucket='', id=(), labels=(), save_dir=''):
# Plot training 'results*.txt'. from utils.plots import *; plot_results(save_dir='runs/train/exp')
def plot_results(file='', dir=''):
# Plot training results.csv. Usage: from utils.plots import *; plot_results('path/to/results.csv')
save_dir = Path(file).parent if file else Path(dir)
fig, ax = plt.subplots(2, 5, figsize=(12, 6), tight_layout=True)
ax = ax.ravel()
s = ['Box', 'Objectness', 'Classification', 'Precision', 'Recall',
'val Box', 'val Objectness', 'val Classification', 'mAP@0.5', 'mAP@0.5:0.95']
if bucket:
# files = ['https://storage.googleapis.com/%s/results%g.txt' % (bucket, x) for x in id]
files = ['results%g.txt' % x for x in id]
c = ('gsutil cp ' + '%s ' * len(files) + '.') % tuple('gs://%s/results%g.txt' % (bucket, x) for x in id)
os.system(c)
else:
files = list(Path(save_dir).glob('results*.txt'))
assert len(files), 'No results.txt files found in %s, nothing to plot.' % os.path.abspath(save_dir)
files = list(save_dir.glob('results*.csv'))
assert len(files), f'No results.csv files found in {save_dir.resolve()}, nothing to plot.'
for fi, f in enumerate(files):
try:
results = np.loadtxt(f, usecols=[2, 3, 4, 8, 9, 12, 13, 14, 10, 11], ndmin=2).T
n = results.shape[1] # number of rows
x = range(start, min(stop, n) if stop else n)
for i in range(10):
y = results[i, x]
if i in [0, 1, 2, 5, 6, 7]:
y[y == 0] = np.nan # don't show zero loss values
# y /= y[0] # normalize
label = labels[fi] if len(labels) else f.stem
ax[i].plot(x, y, marker='.', label=label, linewidth=2, markersize=8)
ax[i].set_title(s[i])
# if i in [5, 6, 7]: # share train and val loss y axes
data = pd.read_csv(f)
s = [x.strip() for x in data.columns]
x = data.values[:, 0]
for i, j in enumerate([1, 2, 3, 4, 5, 8, 9, 10, 6, 7]):
y = data.values[:, j]
# y[y == 0] = np.nan # don't show zero values
ax[i].plot(x, y, marker='.', label=f.stem, linewidth=2, markersize=8)
ax[i].set_title(s[j], fontsize=12)
# if j in [8, 9, 10]: # share train and val loss y axes
# ax[i].get_shared_y_axes().join(ax[i], ax[i - 5])
except Exception as e:
print('Warning: Plotting error for %s; %s' % (f, e))

print(f'Warning: Plotting error for {f}: {e}')
ax[1].legend()
fig.savefig(Path(save_dir) / 'results.png', dpi=200)
fig.savefig(save_dir / 'results.png', dpi=200)


def feature_visualization(x, module_type, stage, n=32, save_dir=Path('runs/detect/exp')):

+ 1
- 1
val.py 查看文件

@@ -171,7 +171,7 @@ def run(data,

# Compute loss
if compute_loss:
loss += compute_loss([x.float() for x in train_out], targets)[1][:3] # box, obj, cls
loss += compute_loss([x.float() for x in train_out], targets)[1] # box, obj, cls

# Run NMS
targets[:, 2:] *= torch.Tensor([width, height, width, height]).to(device) # to pixels

Loading…
取消
儲存