|
|
@@ -80,6 +80,7 @@ def detect(save_img=False): |
|
|
|
p, s, im0 = path, '', im0s |
|
|
|
|
|
|
|
save_path = str(Path(out) / Path(p).name) |
|
|
|
txt_path = str(Path(out) / Path(p).stem) + ('_%g' % dataset.frame if dataset.mode == 'video' else '') |
|
|
|
s += '%gx%g ' % img.shape[2:] # print string |
|
|
|
gn = torch.tensor(im0.shape)[[1, 0, 1, 0]] # normalization gain whwh |
|
|
|
if det is not None and len(det): |
|
|
@@ -95,8 +96,8 @@ def detect(save_img=False): |
|
|
|
for *xyxy, conf, cls in det: |
|
|
|
if save_txt: # Write to file |
|
|
|
xywh = (xyxy2xywh(torch.tensor(xyxy).view(1, 4)) / gn).view(-1).tolist() # normalized xywh |
|
|
|
with open(save_path[:save_path.rfind('.')] + '.txt', 'a') as file: |
|
|
|
file.write(('%g ' * 5 + '\n') % (cls, *xywh)) # label format |
|
|
|
with open(txt_path + '.txt', 'a') as f: |
|
|
|
f.write(('%g ' * 5 + '\n') % (cls, *xywh)) # label format |
|
|
|
|
|
|
|
if save_img or view_img: # Add bbox to image |
|
|
|
label = '%s %.2f' % (names[int(cls)], conf) |