Sfoglia il codice sorgente

Autofix duplicate label handling (#5210)

* Autofix duplicate labels

PR changes duplicate label handling from report error and ignore image-label pair to report warning and autofix image-label pair. 

This should fix this common issue for users and allow everyone to get started and get a model trained faster and easier than before.

* sign fix

* Cleanup

* Increment cache version

* all to any fix
modifyDataloader
Glenn Jocher GitHub 3 anni fa
parent
commit
991c654e81
Non sono state trovate chiavi note per questa firma nel database ID Chiave GPG: 4AEE18F83AFDEB23
1 ha cambiato i file con 12 aggiunte e 8 eliminazioni
  1. +12
    -8
      utils/datasets.py

+ 12
- 8
utils/datasets.py Vedi File

@@ -375,7 +375,7 @@ def img2label_paths(img_paths):

class LoadImagesAndLabels(Dataset):
# YOLOv5 train_loader/val_loader, loads images and labels for training and validation
cache_version = 0.5 # dataset labels *.cache version
cache_version = 0.6 # dataset labels *.cache version

def __init__(self, path, img_size=640, batch_size=16, augment=False, hyp=None, rect=False, image_weights=False,
cache_images=False, single_cls=False, stride=32, pad=0.0, prefix=''):
@@ -897,7 +897,7 @@ def verify_image_label(args):
f.seek(-2, 2)
if f.read() != b'\xff\xd9': # corrupt JPEG
Image.open(im_file).save(im_file, format='JPEG', subsampling=0, quality=100) # re-save image
msg = f'{prefix}WARNING: corrupt JPEG restored and saved {im_file}'
msg = f'{prefix}WARNING: {im_file}: corrupt JPEG restored and saved'

# verify labels
if os.path.isfile(lb_file):
@@ -909,11 +909,15 @@ def verify_image_label(args):
segments = [np.array(x[1:], dtype=np.float32).reshape(-1, 2) for x in l] # (cls, xy1...)
l = np.concatenate((classes.reshape(-1, 1), segments2boxes(segments)), 1) # (cls, xywh)
l = np.array(l, dtype=np.float32)
if len(l):
assert l.shape[1] == 5, 'labels require 5 columns each'
assert (l >= 0).all(), 'negative labels'
assert (l[:, 1:] <= 1).all(), 'non-normalized or out of bounds coordinate labels'
assert np.unique(l, axis=0).shape[0] == l.shape[0], 'duplicate labels'
nl = len(l)
if nl:
assert l.shape[1] == 5, f'labels require 5 columns, {l.shape[1]} columns detected'
assert (l >= 0).all(), f'negative label values {l[l < 0]}'
assert (l[:, 1:] <= 1).all(), f'non-normalized or out of bounds coordinates {l[:, 1:][l[:, 1:] > 1]}'
l = np.unique(l, axis=0) # remove duplicate rows
if len(l) < nl:
segments = np.unique(segments, axis=0)
msg = f'{prefix}WARNING: {im_file}: {nl - len(l)} duplicate labels removed'
else:
ne = 1 # label empty
l = np.zeros((0, 5), dtype=np.float32)
@@ -923,7 +927,7 @@ def verify_image_label(args):
return im_file, l, shape, segments, nm, nf, ne, nc, msg
except Exception as e:
nc = 1
msg = f'{prefix}WARNING: Ignoring corrupted image and/or label {im_file}: {e}'
msg = f'{prefix}WARNING: {im_file}: ignoring corrupt image/label: {e}'
return [None, None, None, None, nm, nf, ne, nc, msg]



Loading…
Annulla
Salva