|
|
@@ -1,4 +1,4 @@ |
|
|
|
# Dataset utils and dataloaders |
|
|
|
# YOLOv5 dataset utils and dataloaders |
|
|
|
|
|
|
|
import glob |
|
|
|
import hashlib |
|
|
@@ -14,7 +14,6 @@ from pathlib import Path |
|
|
|
from threading import Thread |
|
|
|
|
|
|
|
import cv2 |
|
|
|
import math |
|
|
|
import numpy as np |
|
|
|
import torch |
|
|
|
import torch.nn.functional as F |
|
|
@@ -23,9 +22,9 @@ from PIL import Image, ExifTags |
|
|
|
from torch.utils.data import Dataset |
|
|
|
from tqdm import tqdm |
|
|
|
|
|
|
|
from utils.augmentations import augment_hsv, copy_paste, letterbox, mixup, random_perspective |
|
|
|
from utils.general import check_requirements, check_file, check_dataset, xywh2xyxy, xywhn2xyxy, xyxy2xywhn, \ |
|
|
|
xyn2xy, segment2box, segments2boxes, resample_segments, clean_str |
|
|
|
from utils.metrics import bbox_ioa |
|
|
|
xyn2xy, segments2boxes, clean_str |
|
|
|
from utils.torch_utils import torch_distributed_zero_first |
|
|
|
|
|
|
|
# Parameters |
|
|
@@ -523,12 +522,10 @@ class LoadImagesAndLabels(Dataset): # for training/testing |
|
|
|
img, labels = load_mosaic(self, index) |
|
|
|
shapes = None |
|
|
|
|
|
|
|
# MixUp https://arxiv.org/pdf/1710.09412.pdf |
|
|
|
# MixUp augmentation |
|
|
|
if random.random() < hyp['mixup']: |
|
|
|
img2, labels2 = load_mosaic(self, random.randint(0, self.n - 1)) |
|
|
|
r = np.random.beta(32.0, 32.0) # mixup ratio, alpha=beta=32.0 |
|
|
|
img = (img * r + img2 * (1 - r)).astype(np.uint8) |
|
|
|
labels = np.concatenate((labels, labels2), 0) |
|
|
|
img, labels = mixup(img, labels, *load_mosaic(self, random.randint(0, self.n - 1))) |
|
|
|
|
|
|
|
|
|
|
|
else: |
|
|
|
# Load image |
|
|
@@ -639,32 +636,6 @@ def load_image(self, index): |
|
|
|
return self.imgs[index], self.img_hw0[index], self.img_hw[index] # img, hw_original, hw_resized |
|
|
|
|
|
|
|
|
|
|
|
def augment_hsv(img, hgain=0.5, sgain=0.5, vgain=0.5): |
|
|
|
if hgain or sgain or vgain: |
|
|
|
r = np.random.uniform(-1, 1, 3) * [hgain, sgain, vgain] + 1 # random gains |
|
|
|
hue, sat, val = cv2.split(cv2.cvtColor(img, cv2.COLOR_BGR2HSV)) |
|
|
|
dtype = img.dtype # uint8 |
|
|
|
|
|
|
|
x = np.arange(0, 256, dtype=r.dtype) |
|
|
|
lut_hue = ((x * r[0]) % 180).astype(dtype) |
|
|
|
lut_sat = np.clip(x * r[1], 0, 255).astype(dtype) |
|
|
|
lut_val = np.clip(x * r[2], 0, 255).astype(dtype) |
|
|
|
|
|
|
|
img_hsv = cv2.merge((cv2.LUT(hue, lut_hue), cv2.LUT(sat, lut_sat), cv2.LUT(val, lut_val))) |
|
|
|
cv2.cvtColor(img_hsv, cv2.COLOR_HSV2BGR, dst=img) # no return needed |
|
|
|
|
|
|
|
|
|
|
|
def hist_equalize(img, clahe=True, bgr=False): |
|
|
|
# Equalize histogram on BGR image 'img' with img.shape(n,m,3) and range 0-255 |
|
|
|
yuv = cv2.cvtColor(img, cv2.COLOR_BGR2YUV if bgr else cv2.COLOR_RGB2YUV) |
|
|
|
if clahe: |
|
|
|
c = cv2.createCLAHE(clipLimit=2.0, tileGridSize=(8, 8)) |
|
|
|
yuv[:, :, 0] = c.apply(yuv[:, :, 0]) |
|
|
|
else: |
|
|
|
yuv[:, :, 0] = cv2.equalizeHist(yuv[:, :, 0]) # equalize Y channel histogram |
|
|
|
return cv2.cvtColor(yuv, cv2.COLOR_YUV2BGR if bgr else cv2.COLOR_YUV2RGB) # convert YUV image to RGB |
|
|
|
|
|
|
|
|
|
|
|
def load_mosaic(self, index): |
|
|
|
# loads images in a 4-mosaic |
|
|
|
|
|
|
@@ -796,205 +767,6 @@ def load_mosaic9(self, index): |
|
|
|
return img9, labels9 |
|
|
|
|
|
|
|
|
|
|
|
def replicate(img, labels): |
|
|
|
# Replicate labels |
|
|
|
h, w = img.shape[:2] |
|
|
|
boxes = labels[:, 1:].astype(int) |
|
|
|
x1, y1, x2, y2 = boxes.T |
|
|
|
s = ((x2 - x1) + (y2 - y1)) / 2 # side length (pixels) |
|
|
|
for i in s.argsort()[:round(s.size * 0.5)]: # smallest indices |
|
|
|
x1b, y1b, x2b, y2b = boxes[i] |
|
|
|
bh, bw = y2b - y1b, x2b - x1b |
|
|
|
yc, xc = int(random.uniform(0, h - bh)), int(random.uniform(0, w - bw)) # offset x, y |
|
|
|
x1a, y1a, x2a, y2a = [xc, yc, xc + bw, yc + bh] |
|
|
|
img[y1a:y2a, x1a:x2a] = img[y1b:y2b, x1b:x2b] # img4[ymin:ymax, xmin:xmax] |
|
|
|
labels = np.append(labels, [[labels[i, 0], x1a, y1a, x2a, y2a]], axis=0) |
|
|
|
|
|
|
|
return img, labels |
|
|
|
|
|
|
|
|
|
|
|
def letterbox(img, new_shape=(640, 640), color=(114, 114, 114), auto=True, scaleFill=False, scaleup=True, stride=32): |
|
|
|
# Resize and pad image while meeting stride-multiple constraints |
|
|
|
shape = img.shape[:2] # current shape [height, width] |
|
|
|
if isinstance(new_shape, int): |
|
|
|
new_shape = (new_shape, new_shape) |
|
|
|
|
|
|
|
# Scale ratio (new / old) |
|
|
|
r = min(new_shape[0] / shape[0], new_shape[1] / shape[1]) |
|
|
|
if not scaleup: # only scale down, do not scale up (for better test mAP) |
|
|
|
r = min(r, 1.0) |
|
|
|
|
|
|
|
# Compute padding |
|
|
|
ratio = r, r # width, height ratios |
|
|
|
new_unpad = int(round(shape[1] * r)), int(round(shape[0] * r)) |
|
|
|
dw, dh = new_shape[1] - new_unpad[0], new_shape[0] - new_unpad[1] # wh padding |
|
|
|
if auto: # minimum rectangle |
|
|
|
dw, dh = np.mod(dw, stride), np.mod(dh, stride) # wh padding |
|
|
|
elif scaleFill: # stretch |
|
|
|
dw, dh = 0.0, 0.0 |
|
|
|
new_unpad = (new_shape[1], new_shape[0]) |
|
|
|
ratio = new_shape[1] / shape[1], new_shape[0] / shape[0] # width, height ratios |
|
|
|
|
|
|
|
dw /= 2 # divide padding into 2 sides |
|
|
|
dh /= 2 |
|
|
|
|
|
|
|
if shape[::-1] != new_unpad: # resize |
|
|
|
img = cv2.resize(img, new_unpad, interpolation=cv2.INTER_LINEAR) |
|
|
|
top, bottom = int(round(dh - 0.1)), int(round(dh + 0.1)) |
|
|
|
left, right = int(round(dw - 0.1)), int(round(dw + 0.1)) |
|
|
|
img = cv2.copyMakeBorder(img, top, bottom, left, right, cv2.BORDER_CONSTANT, value=color) # add border |
|
|
|
return img, ratio, (dw, dh) |
|
|
|
|
|
|
|
|
|
|
|
def random_perspective(img, targets=(), segments=(), degrees=10, translate=.1, scale=.1, shear=10, perspective=0.0, |
|
|
|
border=(0, 0)): |
|
|
|
# torchvision.transforms.RandomAffine(degrees=(-10, 10), translate=(.1, .1), scale=(.9, 1.1), shear=(-10, 10)) |
|
|
|
# targets = [cls, xyxy] |
|
|
|
|
|
|
|
height = img.shape[0] + border[0] * 2 # shape(h,w,c) |
|
|
|
width = img.shape[1] + border[1] * 2 |
|
|
|
|
|
|
|
# Center |
|
|
|
C = np.eye(3) |
|
|
|
C[0, 2] = -img.shape[1] / 2 # x translation (pixels) |
|
|
|
C[1, 2] = -img.shape[0] / 2 # y translation (pixels) |
|
|
|
|
|
|
|
# Perspective |
|
|
|
P = np.eye(3) |
|
|
|
P[2, 0] = random.uniform(-perspective, perspective) # x perspective (about y) |
|
|
|
P[2, 1] = random.uniform(-perspective, perspective) # y perspective (about x) |
|
|
|
|
|
|
|
# Rotation and Scale |
|
|
|
R = np.eye(3) |
|
|
|
a = random.uniform(-degrees, degrees) |
|
|
|
# a += random.choice([-180, -90, 0, 90]) # add 90deg rotations to small rotations |
|
|
|
s = random.uniform(1 - scale, 1 + scale) |
|
|
|
# s = 2 ** random.uniform(-scale, scale) |
|
|
|
R[:2] = cv2.getRotationMatrix2D(angle=a, center=(0, 0), scale=s) |
|
|
|
|
|
|
|
# Shear |
|
|
|
S = np.eye(3) |
|
|
|
S[0, 1] = math.tan(random.uniform(-shear, shear) * math.pi / 180) # x shear (deg) |
|
|
|
S[1, 0] = math.tan(random.uniform(-shear, shear) * math.pi / 180) # y shear (deg) |
|
|
|
|
|
|
|
# Translation |
|
|
|
T = np.eye(3) |
|
|
|
T[0, 2] = random.uniform(0.5 - translate, 0.5 + translate) * width # x translation (pixels) |
|
|
|
T[1, 2] = random.uniform(0.5 - translate, 0.5 + translate) * height # y translation (pixels) |
|
|
|
|
|
|
|
# Combined rotation matrix |
|
|
|
M = T @ S @ R @ P @ C # order of operations (right to left) is IMPORTANT |
|
|
|
if (border[0] != 0) or (border[1] != 0) or (M != np.eye(3)).any(): # image changed |
|
|
|
if perspective: |
|
|
|
img = cv2.warpPerspective(img, M, dsize=(width, height), borderValue=(114, 114, 114)) |
|
|
|
else: # affine |
|
|
|
img = cv2.warpAffine(img, M[:2], dsize=(width, height), borderValue=(114, 114, 114)) |
|
|
|
|
|
|
|
# Visualize |
|
|
|
# import matplotlib.pyplot as plt |
|
|
|
# ax = plt.subplots(1, 2, figsize=(12, 6))[1].ravel() |
|
|
|
# ax[0].imshow(img[:, :, ::-1]) # base |
|
|
|
# ax[1].imshow(img2[:, :, ::-1]) # warped |
|
|
|
|
|
|
|
# Transform label coordinates |
|
|
|
n = len(targets) |
|
|
|
if n: |
|
|
|
use_segments = any(x.any() for x in segments) |
|
|
|
new = np.zeros((n, 4)) |
|
|
|
if use_segments: # warp segments |
|
|
|
segments = resample_segments(segments) # upsample |
|
|
|
for i, segment in enumerate(segments): |
|
|
|
xy = np.ones((len(segment), 3)) |
|
|
|
xy[:, :2] = segment |
|
|
|
xy = xy @ M.T # transform |
|
|
|
xy = xy[:, :2] / xy[:, 2:3] if perspective else xy[:, :2] # perspective rescale or affine |
|
|
|
|
|
|
|
# clip |
|
|
|
new[i] = segment2box(xy, width, height) |
|
|
|
|
|
|
|
else: # warp boxes |
|
|
|
xy = np.ones((n * 4, 3)) |
|
|
|
xy[:, :2] = targets[:, [1, 2, 3, 4, 1, 4, 3, 2]].reshape(n * 4, 2) # x1y1, x2y2, x1y2, x2y1 |
|
|
|
xy = xy @ M.T # transform |
|
|
|
xy = (xy[:, :2] / xy[:, 2:3] if perspective else xy[:, :2]).reshape(n, 8) # perspective rescale or affine |
|
|
|
|
|
|
|
# create new boxes |
|
|
|
x = xy[:, [0, 2, 4, 6]] |
|
|
|
y = xy[:, [1, 3, 5, 7]] |
|
|
|
new = np.concatenate((x.min(1), y.min(1), x.max(1), y.max(1))).reshape(4, n).T |
|
|
|
|
|
|
|
# clip |
|
|
|
new[:, [0, 2]] = new[:, [0, 2]].clip(0, width) |
|
|
|
new[:, [1, 3]] = new[:, [1, 3]].clip(0, height) |
|
|
|
|
|
|
|
# filter candidates |
|
|
|
i = box_candidates(box1=targets[:, 1:5].T * s, box2=new.T, area_thr=0.01 if use_segments else 0.10) |
|
|
|
targets = targets[i] |
|
|
|
targets[:, 1:5] = new[i] |
|
|
|
|
|
|
|
return img, targets |
|
|
|
|
|
|
|
|
|
|
|
def copy_paste(img, labels, segments, probability=0.5): |
|
|
|
# Implement Copy-Paste augmentation https://arxiv.org/abs/2012.07177, labels as nx5 np.array(cls, xyxy) |
|
|
|
n = len(segments) |
|
|
|
if probability and n: |
|
|
|
h, w, c = img.shape # height, width, channels |
|
|
|
im_new = np.zeros(img.shape, np.uint8) |
|
|
|
for j in random.sample(range(n), k=round(probability * n)): |
|
|
|
l, s = labels[j], segments[j] |
|
|
|
box = w - l[3], l[2], w - l[1], l[4] |
|
|
|
ioa = bbox_ioa(box, labels[:, 1:5]) # intersection over area |
|
|
|
if (ioa < 0.30).all(): # allow 30% obscuration of existing labels |
|
|
|
labels = np.concatenate((labels, [[l[0], *box]]), 0) |
|
|
|
segments.append(np.concatenate((w - s[:, 0:1], s[:, 1:2]), 1)) |
|
|
|
cv2.drawContours(im_new, [segments[j].astype(np.int32)], -1, (255, 255, 255), cv2.FILLED) |
|
|
|
|
|
|
|
result = cv2.bitwise_and(src1=img, src2=im_new) |
|
|
|
result = cv2.flip(result, 1) # augment segments (flip left-right) |
|
|
|
i = result > 0 # pixels to replace |
|
|
|
# i[:, :] = result.max(2).reshape(h, w, 1) # act over ch |
|
|
|
img[i] = result[i] # cv2.imwrite('debug.jpg', img) # debug |
|
|
|
|
|
|
|
return img, labels, segments |
|
|
|
|
|
|
|
|
|
|
|
def box_candidates(box1, box2, wh_thr=2, ar_thr=20, area_thr=0.1, eps=1e-16): # box1(4,n), box2(4,n) |
|
|
|
# Compute candidate boxes: box1 before augment, box2 after augment, wh_thr (pixels), aspect_ratio_thr, area_ratio |
|
|
|
w1, h1 = box1[2] - box1[0], box1[3] - box1[1] |
|
|
|
w2, h2 = box2[2] - box2[0], box2[3] - box2[1] |
|
|
|
ar = np.maximum(w2 / (h2 + eps), h2 / (w2 + eps)) # aspect ratio |
|
|
|
return (w2 > wh_thr) & (h2 > wh_thr) & (w2 * h2 / (w1 * h1 + eps) > area_thr) & (ar < ar_thr) # candidates |
|
|
|
|
|
|
|
|
|
|
|
def cutout(image, labels): |
|
|
|
# Applies image cutout augmentation https://arxiv.org/abs/1708.04552 |
|
|
|
h, w = image.shape[:2] |
|
|
|
|
|
|
|
# create random masks |
|
|
|
scales = [0.5] * 1 + [0.25] * 2 + [0.125] * 4 + [0.0625] * 8 + [0.03125] * 16 # image size fraction |
|
|
|
for s in scales: |
|
|
|
mask_h = random.randint(1, int(h * s)) |
|
|
|
mask_w = random.randint(1, int(w * s)) |
|
|
|
|
|
|
|
# box |
|
|
|
xmin = max(0, random.randint(0, w) - mask_w // 2) |
|
|
|
ymin = max(0, random.randint(0, h) - mask_h // 2) |
|
|
|
xmax = min(w, xmin + mask_w) |
|
|
|
ymax = min(h, ymin + mask_h) |
|
|
|
|
|
|
|
# apply random color mask |
|
|
|
image[ymin:ymax, xmin:xmax] = [random.randint(64, 191) for _ in range(3)] |
|
|
|
|
|
|
|
# return unobscured labels |
|
|
|
if len(labels) and s > 0.03: |
|
|
|
box = np.array([xmin, ymin, xmax, ymax], dtype=np.float32) |
|
|
|
ioa = bbox_ioa(box, labels[:, 1:5]) # intersection over area |
|
|
|
labels = labels[ioa < 0.60] # remove >60% obscured labels |
|
|
|
|
|
|
|
return labels |
|
|
|
|
|
|
|
|
|
|
|
def create_folder(path='./new'): |
|
|
|
# Create folder |
|
|
|
if os.path.exists(path): |
|
|
@@ -1012,7 +784,6 @@ def flatten_recursive(path='../datasets/coco128'): |
|
|
|
|
|
|
|
def extract_boxes(path='../datasets/coco128'): # from utils.datasets import *; extract_boxes() |
|
|
|
# Convert detection dataset into classification dataset, with one directory per class |
|
|
|
|
|
|
|
path = Path(path) # images dir |
|
|
|
shutil.rmtree(path / 'classifier') if (path / 'classifier').is_dir() else None # remove existing |
|
|
|
files = list(path.rglob('*.*')) |