|
|
@@ -131,7 +131,7 @@ class C3(nn.Module): |
|
|
|
c_ = int(c2 * e) # hidden channels |
|
|
|
self.cv1 = Conv(c1, c_, 1, 1) |
|
|
|
self.cv2 = Conv(c1, c_, 1, 1) |
|
|
|
self.cv3 = Conv(2 * c_, c2, 1) # act=FReLU(c2) |
|
|
|
self.cv3 = Conv(2 * c_, c2, 1) # optional act=FReLU(c2) |
|
|
|
self.m = nn.Sequential(*(Bottleneck(c_, c_, shortcut, g, e=1.0) for _ in range(n))) |
|
|
|
# self.m = nn.Sequential(*(CrossConv(c_, c_, 3, 1, g, 1.0, shortcut) for _ in range(n))) |
|
|
|
|
|
|
@@ -589,7 +589,7 @@ class Detections: |
|
|
|
self.t = tuple((times[i + 1] - times[i]) * 1000 / self.n for i in range(3)) # timestamps (ms) |
|
|
|
self.s = shape # inference BCHW shape |
|
|
|
|
|
|
|
def display(self, pprint=False, show=False, save=False, crop=False, render=False, save_dir=Path('')): |
|
|
|
def display(self, pprint=False, show=False, save=False, crop=False, render=False, labels=True, save_dir=Path('')): |
|
|
|
crops = [] |
|
|
|
for i, (im, pred) in enumerate(zip(self.imgs, self.pred)): |
|
|
|
s = f'image {i + 1}/{len(self.pred)}: {im.shape[0]}x{im.shape[1]} ' # string |
|
|
@@ -606,7 +606,7 @@ class Detections: |
|
|
|
crops.append({'box': box, 'conf': conf, 'cls': cls, 'label': label, |
|
|
|
'im': save_one_box(box, im, file=file, save=save)}) |
|
|
|
else: # all others |
|
|
|
annotator.box_label(box, label, color=colors(cls)) |
|
|
|
annotator.box_label(box, label if labels else '', color=colors(cls)) |
|
|
|
im = annotator.im |
|
|
|
else: |
|
|
|
s += '(no detections)' |
|
|
@@ -633,19 +633,19 @@ class Detections: |
|
|
|
LOGGER.info(f'Speed: %.1fms pre-process, %.1fms inference, %.1fms NMS per image at shape {tuple(self.s)}' % |
|
|
|
self.t) |
|
|
|
|
|
|
|
def show(self): |
|
|
|
self.display(show=True) # show results |
|
|
|
def show(self, labels=True): |
|
|
|
self.display(show=True, labels=labels) # show results |
|
|
|
|
|
|
|
def save(self, save_dir='runs/detect/exp'): |
|
|
|
def save(self, labels=True, save_dir='runs/detect/exp'): |
|
|
|
save_dir = increment_path(save_dir, exist_ok=save_dir != 'runs/detect/exp', mkdir=True) # increment save_dir |
|
|
|
self.display(save=True, save_dir=save_dir) # save results |
|
|
|
self.display(save=True, labels=labels, save_dir=save_dir) # save results |
|
|
|
|
|
|
|
def crop(self, save=True, save_dir='runs/detect/exp'): |
|
|
|
save_dir = increment_path(save_dir, exist_ok=save_dir != 'runs/detect/exp', mkdir=True) if save else None |
|
|
|
return self.display(crop=True, save=save, save_dir=save_dir) # crop results |
|
|
|
|
|
|
|
def render(self): |
|
|
|
self.display(render=True) # render results |
|
|
|
def render(self, labels=True): |
|
|
|
self.display(render=True, labels=labels) # render results |
|
|
|
return self.imgs |
|
|
|
|
|
|
|
def pandas(self): |