@@ -172,7 +172,7 @@ if __name__ == '__main__': | |||
parser.add_argument('--hide-conf', default=False, action='store_true', help='hide confidences') | |||
opt = parser.parse_args() | |||
print(opt) | |||
check_requirements(exclude=('pycocotools', 'thop')) | |||
check_requirements(exclude=('tensorboard', 'pycocotools', 'thop')) | |||
with torch.no_grad(): | |||
if opt.update: # update all models (to fix SourceChangeWarning) |
@@ -15,7 +15,7 @@ from utils.google_utils import attempt_download | |||
from utils.torch_utils import select_device | |||
dependencies = ['torch', 'yaml'] | |||
check_requirements(Path(__file__).parent / 'requirements.txt', exclude=('pycocotools', 'thop')) | |||
check_requirements(Path(__file__).parent / 'requirements.txt', exclude=('tensorboard', 'pycocotools', 'thop')) | |||
def create(name, pretrained, channels, classes, autoshape, verbose): |
@@ -310,7 +310,7 @@ if __name__ == '__main__': | |||
opt.save_json |= opt.data.endswith('coco.yaml') | |||
opt.data = check_file(opt.data) # check file | |||
print(opt) | |||
check_requirements() | |||
check_requirements(exclude=('tensorboard', 'pycocotools', 'thop')) | |||
if opt.task in ('train', 'val', 'test'): # run normally | |||
test(opt.data, |
@@ -497,7 +497,7 @@ if __name__ == '__main__': | |||
set_logging(opt.global_rank) | |||
if opt.global_rank in [-1, 0]: | |||
check_git_status() | |||
check_requirements() | |||
check_requirements(exclude=('pycocotools', 'thop')) | |||
# Resume | |||
wandb_run = check_wandb_resume(opt) |
@@ -3,7 +3,6 @@ | |||
import numpy as np | |||
import torch | |||
import yaml | |||
from scipy.cluster.vq import kmeans | |||
from tqdm import tqdm | |||
from utils.general import colorstr | |||
@@ -76,6 +75,8 @@ def kmean_anchors(path='./data/coco128.yaml', n=9, img_size=640, thr=4.0, gen=10 | |||
Usage: | |||
from utils.autoanchor import *; _ = kmean_anchors() | |||
""" | |||
from scipy.cluster.vq import kmeans | |||
thr = 1. / thr | |||
prefix = colorstr('autoanchor: ') | |||
@@ -16,7 +16,6 @@ import seaborn as sns | |||
import torch | |||
import yaml | |||
from PIL import Image, ImageDraw, ImageFont | |||
from scipy.signal import butter, filtfilt | |||
from utils.general import xywh2xyxy, xyxy2xywh | |||
from utils.metrics import fitness | |||
@@ -54,6 +53,8 @@ def hist2d(x, y, n=100): | |||
def butter_lowpass_filtfilt(data, cutoff=1500, fs=50000, order=5): | |||
from scipy.signal import butter, filtfilt | |||
# https://stackoverflow.com/questions/28536191/how-to-filter-smooth-with-scipy-numpy | |||
def butter_lowpass(cutoff, fs, order): | |||
nyq = 0.5 * fs |