Browse Source

Refactor test.py arguments (#3558)

* remove opt from test()

* pass kwargs

* update comments

* revert accidental default change

* multiple --img options

* add comments
modifyDataloader
Glenn Jocher GitHub 3 years ago
parent
commit
a9553c04a7
No known key found for this signature in database GPG Key ID: 4AEE18F83AFDEB23
2 changed files with 19 additions and 29 deletions
  1. +1
    -1
      detect.py
  2. +18
    -28
      test.py

+ 1
- 1
detect.py View File

@@ -33,7 +33,7 @@ def detect(opt):
# Load model
model = attempt_load(weights, map_location=device) # load FP32 model
stride = int(model.stride.max()) # model stride
imgsz = check_img_size(imgsz, s=stride) # check img_size
imgsz = check_img_size(imgsz, s=stride) # check image size
names = model.module.names if hasattr(model, 'module') else model.names # get class names
if half:
model.half() # to FP16

+ 18
- 28
test.py View File

@@ -22,9 +22,9 @@ from utils.torch_utils import select_device, time_synchronized
def test(data,
weights=None,
batch_size=32,
imgsz=640,
conf_thres=0.001,
iou_thres=0.6, # for NMS
imgsz=640, # image size
conf_thres=0.001, # confidence threshold
iou_thres=0.6, # NMS IoU threshold
save_json=False,
single_cls=False,
augment=False,
@@ -38,8 +38,12 @@ def test(data,
plots=True,
wandb_logger=None,
compute_loss=None,
half=True,
opt=None):
half=True, # FP16 half-precision inference
project='runs/test',
name='exp',
exist_ok=False,
task='val',
device=''):
# Initialize/load model and set device
training = model is not None
if training: # called by train.py
@@ -47,16 +51,16 @@ def test(data,

else: # called directly
set_logging()
device = select_device(opt.device, batch_size=batch_size)
device = select_device(device, batch_size=batch_size)

# Directories
save_dir = increment_path(Path(opt.project) / opt.name, exist_ok=opt.exist_ok) # increment run
save_dir = increment_path(Path(project) / name, exist_ok=exist_ok) # increment run
(save_dir / 'labels' if save_txt else save_dir).mkdir(parents=True, exist_ok=True) # make dir

# Load model
model = attempt_load(weights, map_location=device) # load FP32 model
gs = max(int(model.stride.max()), 32) # grid size (max stride)
imgsz = check_img_size(imgsz, s=gs) # check img_size
imgsz = check_img_size(imgsz, s=gs) # check image size

# Multi-GPU disabled, incompatible with .half() https://github.com/ultralytics/yolov5/issues/99
# if device.type != 'cpu' and torch.cuda.device_count() > 1:
@@ -86,7 +90,7 @@ def test(data,
if not training:
if device.type != 'cpu':
model(torch.zeros(1, 3, imgsz, imgsz).to(device).type_as(next(model.parameters()))) # run once
task = opt.task if opt.task in ('train', 'val', 'test') else 'val' # path to train/val/test images
task = task if task in ('train', 'val', 'test') else 'val' # path to train/val/test images
dataloader = create_dataloader(data[task], imgsz, batch_size, gs, single_cls, pad=0.5, rect=True,
prefix=colorstr(f'{task}: '))[0]

@@ -294,7 +298,7 @@ if __name__ == '__main__':
parser.add_argument('--weights', nargs='+', type=str, default='yolov5s.pt', help='model.pt path(s)')
parser.add_argument('--data', type=str, default='data/coco128.yaml', help='*.data path')
parser.add_argument('--batch-size', type=int, default=32, help='size of each image batch')
parser.add_argument('--img-size', type=int, default=640, help='inference size (pixels)')
parser.add_argument('--imgsz', '--img', '--img-size', type=int, default=640, help='inference size (pixels)')
parser.add_argument('--conf-thres', type=float, default=0.001, help='object confidence threshold')
parser.add_argument('--iou-thres', type=float, default=0.6, help='IOU threshold for NMS')
parser.add_argument('--task', default='val', help='train, val, test, speed or study')
@@ -312,31 +316,17 @@ if __name__ == '__main__':
parser.add_argument('--half', action='store_true', help='use FP16 half-precision inference')
opt = parser.parse_args()
opt.save_json |= opt.data.endswith('coco.yaml')
opt.save_txt |= opt.save_hybrid
opt.data = check_file(opt.data) # check file
print(opt)
check_requirements(exclude=('tensorboard', 'thop'))

if opt.task in ('train', 'val', 'test'): # run normally
test(opt.data,
opt.weights,
opt.batch_size,
opt.img_size,
opt.conf_thres,
opt.iou_thres,
opt.save_json,
opt.single_cls,
opt.augment,
opt.verbose,
save_txt=opt.save_txt | opt.save_hybrid,
save_hybrid=opt.save_hybrid,
save_conf=opt.save_conf,
half=opt.half,
opt=opt
)
test(**vars(opt))

elif opt.task == 'speed': # speed benchmarks
for w in opt.weights if isinstance(opt.weights, list) else [opt.weights]:
test(opt.data, w, opt.batch_size, opt.img_size, 0.25, 0.45, save_json=False, plots=False, opt=opt)
test(opt.data, w, opt.batch_size, opt.imgsz, 0.25, 0.45, save_json=False, plots=False)

elif opt.task == 'study': # run over a range of settings and save/plot
# python test.py --task study --data coco.yaml --iou 0.7 --weights yolov5s.pt yolov5m.pt yolov5l.pt yolov5x.pt
@@ -347,7 +337,7 @@ if __name__ == '__main__':
for i in x: # img-size
print(f'\nRunning {f} point {i}...')
r, _, t = test(opt.data, w, opt.batch_size, i, opt.conf_thres, opt.iou_thres, opt.save_json,
plots=False, opt=opt)
plots=False)
y.append(r + t) # results and times
np.savetxt(f, y, fmt='%10.4g') # save
os.system('zip -r study.zip study_*.txt')

Loading…
Cancel
Save