|
|
@@ -66,9 +66,10 @@ class Detect(nn.Module): |
|
|
|
y[..., 0:2] = (y[..., 0:2] * 2 - 0.5 + self.grid[i]) * self.stride[i] # xy |
|
|
|
y[..., 2:4] = (y[..., 2:4] * 2) ** 2 * self.anchor_grid[i] # wh |
|
|
|
else: # for YOLOv5 on AWS Inferentia https://github.com/ultralytics/yolov5/pull/2953 |
|
|
|
xy = (y[..., 0:2] * 2 + (self.grid[i] - 0.5)) * self.stride[i] # xy |
|
|
|
wh = (y[..., 2:4] * 2) ** 2 * self.anchor_grid[i] # wh |
|
|
|
y = torch.cat((xy, wh, y[..., 4:]), 4) |
|
|
|
xy, wh, conf = y.split((2, 2, self.nc + 1), 4) # y.tensor_split((2, 4, 5), 4) # torch 1.8.0 |
|
|
|
xy = (xy * 2 + (self.grid[i] - 0.5)) * self.stride[i] # xy |
|
|
|
wh = (wh * 2) ** 2 * self.anchor_grid[i] # wh |
|
|
|
y = torch.cat((xy, wh, conf), 4) |
|
|
|
z.append(y.view(bs, -1, self.no)) |
|
|
|
|
|
|
|
return x if self.training else (torch.cat(z, 1), x) |