Explorar el Código

`ComputeLoss()` indexing/speed improvements (#7048)

* device as class attribute

* Update loss.py

* Update loss.py

* improve zeros

* tensor split
modifyDataloader
Glenn Jocher GitHub hace 2 años
padre
commit
b0ba101ac0
No se encontró ninguna clave conocida en la base de datos para esta firma ID de clave GPG: 4AEE18F83AFDEB23
Se han modificado 1 ficheros con 19 adiciones y 18 borrados
  1. +19
    -18
      utils/loss.py

+ 19
- 18
utils/loss.py Ver fichero

@@ -89,9 +89,10 @@ class QFocalLoss(nn.Module):


class ComputeLoss:
sort_obj_iou = False

# Compute losses
def __init__(self, model, autobalance=False):
self.sort_obj_iou = False
device = next(model.parameters()).device # get model device
h = model.hyp # hyperparameters

@@ -111,26 +112,28 @@ class ComputeLoss:
self.balance = {3: [4.0, 1.0, 0.4]}.get(det.nl, [4.0, 1.0, 0.25, 0.06, 0.02]) # P3-P7
self.ssi = list(det.stride).index(16) if autobalance else 0 # stride 16 index
self.BCEcls, self.BCEobj, self.gr, self.hyp, self.autobalance = BCEcls, BCEobj, 1.0, h, autobalance
self.device = device
for k in 'na', 'nc', 'nl', 'anchors':
setattr(self, k, getattr(det, k))

def __call__(self, p, targets): # predictions, targets, model
device = targets.device
lcls, lbox, lobj = torch.zeros(1, device=device), torch.zeros(1, device=device), torch.zeros(1, device=device)
def __call__(self, p, targets): # predictions, targets
lcls = torch.zeros(1, device=self.device) # class loss
lbox = torch.zeros(1, device=self.device) # box loss
lobj = torch.zeros(1, device=self.device) # object loss
tcls, tbox, indices, anchors = self.build_targets(p, targets) # targets

# Losses
for i, pi in enumerate(p): # layer index, layer predictions
b, a, gj, gi = indices[i] # image, anchor, gridy, gridx
tobj = torch.zeros_like(pi[..., 0], device=device) # target obj
tobj = torch.zeros(pi.shape[:4], device=self.device) # target obj

n = b.shape[0] # number of targets
if n:
ps = pi[b, a, gj, gi] # prediction subset corresponding to targets
pxy, pwh, _, pcls = pi[b, a, gj, gi].tensor_split((2, 4, 5), dim=1) # target-subset of predictions

# Regression
pxy = ps[:, :2].sigmoid() * 2 - 0.5
pwh = (ps[:, 2:4].sigmoid() * 2) ** 2 * anchors[i]
pxy = pxy.sigmoid() * 2 - 0.5
pwh = (pwh.sigmoid() * 2) ** 2 * anchors[i]
pbox = torch.cat((pxy, pwh), 1) # predicted box
iou = bbox_iou(pbox.T, tbox[i], x1y1x2y2=False, CIoU=True) # iou(prediction, target)
lbox += (1.0 - iou).mean() # iou loss
@@ -144,9 +147,9 @@ class ComputeLoss:

# Classification
if self.nc > 1: # cls loss (only if multiple classes)
t = torch.full_like(ps[:, 5:], self.cn, device=device) # targets
t = torch.full_like(pcls, self.cn, device=self.device) # targets
t[range(n), tcls[i]] = self.cp
lcls += self.BCEcls(ps[:, 5:], t) # BCE
lcls += self.BCEcls(pcls, t) # BCE

# Append targets to text file
# with open('targets.txt', 'a') as file:
@@ -170,15 +173,15 @@ class ComputeLoss:
# Build targets for compute_loss(), input targets(image,class,x,y,w,h)
na, nt = self.na, targets.shape[0] # number of anchors, targets
tcls, tbox, indices, anch = [], [], [], []
gain = torch.ones(7, device=targets.device) # normalized to gridspace gain
ai = torch.arange(na, device=targets.device).float().view(na, 1).repeat(1, nt) # same as .repeat_interleave(nt)
gain = torch.ones(7, device=self.device) # normalized to gridspace gain
ai = torch.arange(na, device=self.device).float().view(na, 1).repeat(1, nt) # same as .repeat_interleave(nt)
targets = torch.cat((targets.repeat(na, 1, 1), ai[:, :, None]), 2) # append anchor indices

g = 0.5 # bias
off = torch.tensor([[0, 0],
[1, 0], [0, 1], [-1, 0], [0, -1], # j,k,l,m
# [1, 1], [1, -1], [-1, 1], [-1, -1], # jk,jm,lk,lm
], device=targets.device).float() * g # offsets
], device=self.device).float() * g # offsets

for i in range(self.nl):
anchors = self.anchors[i]
@@ -206,14 +209,12 @@ class ComputeLoss:
offsets = 0

# Define
b, c = t[:, :2].long().T # image, class
gxy = t[:, 2:4] # grid xy
gwh = t[:, 4:6] # grid wh
bc, gxy, gwh, a = t.unsafe_chunk(4, dim=1) # (image, class), grid xy, grid wh, anchors
a, (b, c) = a.long().view(-1), bc.long().T # anchors, image, class
gij = (gxy - offsets).long()
gi, gj = gij.T # grid xy indices
gi, gj = gij.T # grid indices

# Append
a = t[:, 6].long() # anchor indices
indices.append((b, a, gj.clamp_(0, gain[3] - 1), gi.clamp_(0, gain[2] - 1))) # image, anchor, grid indices
tbox.append(torch.cat((gxy - gij, gwh), 1)) # box
anch.append(anchors[a]) # anchors

Cargando…
Cancelar
Guardar