Browse Source

Update README.md (#5015)

modifyDataloader
Glenn Jocher GitHub 3 years ago
parent
commit
b20e381492
No known key found for this signature in database GPG Key ID: 4AEE18F83AFDEB23
1 changed files with 5 additions and 7 deletions
  1. +5
    -7
      README.md

+ 5
- 7
README.md View File

@@ -245,17 +245,15 @@ We are super excited about our first-ever Ultralytics YOLOv5 🚀 EXPORT Competi
<details>
<summary>Table Notes (click to expand)</summary>

* All checkpoints are trained to 300 epochs with default settings and hyperparameters.
* AP<sup>test</sup> denotes COCO [test-dev2017](http://cocodataset.org/#upload) server results, all other AP results
denote val2017 accuracy.
* AP values are for single-model single-scale unless otherwise noted. **Reproduce mAP**
by `python val.py --data coco.yaml --img 640 --conf 0.001 --iou 0.65`
* Speed<sub>GPU</sub> averaged over 5000 COCO val2017 images using a
* **mAP** values are for single-model single-scale unless otherwise noted.<br>**Reproduce** by `python val.py --data coco.yaml --img 640 --conf 0.001 --iou 0.65`
* **Speed** averaged over 5000 COCO val2017 images using a
GCP [n1-standard-16](https://cloud.google.com/compute/docs/machine-types#n1_standard_machine_types) V100 instance, and
includes FP16 inference, postprocessing and NMS. **Reproduce speed**
includes FP16 inference, postprocessing and NMS.<br>**Reproduce**
by `python val.py --data coco.yaml --img 640 --conf 0.25 --iou 0.45 --half`
* All checkpoints are trained to 300 epochs with default settings and hyperparameters (no autoaugmentation).
* Test Time Augmentation ([TTA](https://github.com/ultralytics/yolov5/issues/303)) includes reflection and scale
augmentation. **Reproduce TTA** by `python val.py --data coco.yaml --img 1536 --iou 0.7 --augment`
* **TTA** [Test Time Augmentation](https://github.com/ultralytics/yolov5/issues/303) includes reflection and scale.<br>**Reproduce** by `python val.py --data coco.yaml --img 1536 --iou 0.7 --augment`

</details>


Loading…
Cancel
Save