|
|
@@ -245,17 +245,15 @@ We are super excited about our first-ever Ultralytics YOLOv5 🚀 EXPORT Competi |
|
|
|
<details> |
|
|
|
<summary>Table Notes (click to expand)</summary> |
|
|
|
|
|
|
|
* All checkpoints are trained to 300 epochs with default settings and hyperparameters. |
|
|
|
* AP<sup>test</sup> denotes COCO [test-dev2017](http://cocodataset.org/#upload) server results, all other AP results |
|
|
|
denote val2017 accuracy. |
|
|
|
* AP values are for single-model single-scale unless otherwise noted. **Reproduce mAP** |
|
|
|
by `python val.py --data coco.yaml --img 640 --conf 0.001 --iou 0.65` |
|
|
|
* Speed<sub>GPU</sub> averaged over 5000 COCO val2017 images using a |
|
|
|
* **mAP** values are for single-model single-scale unless otherwise noted.<br>**Reproduce** by `python val.py --data coco.yaml --img 640 --conf 0.001 --iou 0.65` |
|
|
|
* **Speed** averaged over 5000 COCO val2017 images using a |
|
|
|
GCP [n1-standard-16](https://cloud.google.com/compute/docs/machine-types#n1_standard_machine_types) V100 instance, and |
|
|
|
includes FP16 inference, postprocessing and NMS. **Reproduce speed** |
|
|
|
includes FP16 inference, postprocessing and NMS.<br>**Reproduce** |
|
|
|
by `python val.py --data coco.yaml --img 640 --conf 0.25 --iou 0.45 --half` |
|
|
|
* All checkpoints are trained to 300 epochs with default settings and hyperparameters (no autoaugmentation). |
|
|
|
* Test Time Augmentation ([TTA](https://github.com/ultralytics/yolov5/issues/303)) includes reflection and scale |
|
|
|
augmentation. **Reproduce TTA** by `python val.py --data coco.yaml --img 1536 --iou 0.7 --augment` |
|
|
|
* **TTA** [Test Time Augmentation](https://github.com/ultralytics/yolov5/issues/303) includes reflection and scale.<br>**Reproduce** by `python val.py --data coco.yaml --img 1536 --iou 0.7 --augment` |
|
|
|
|
|
|
|
</details> |
|
|
|
|