Bladeren bron

module updates

5.0
Glenn Jocher 4 jaren geleden
bovenliggende
commit
b5659d1195
2 gewijzigde bestanden met toevoegingen van 44 en 7 verwijderingen
  1. +10
    -7
      models/common.py
  2. +34
    -0
      models/experimental.py

+ 10
- 7
models/common.py Bestand weergeven

@@ -1,9 +1,13 @@
# This file contains modules common to various models


from utils.utils import *


def autopad(k):
# Pad to 'same'
return k // 2 if isinstance(k, int) else [x // 2 for x in k] # auto-pad


def DWConv(c1, c2, k=1, s=1, act=True):
# Depthwise convolution
return Conv(c1, c2, k, s, g=math.gcd(c1, c2), act=act)
@@ -11,10 +15,9 @@ def DWConv(c1, c2, k=1, s=1, act=True):

class Conv(nn.Module):
# Standard convolution
def __init__(self, c1, c2, k=1, s=1, g=1, act=True): # ch_in, ch_out, kernel, stride, groups
def __init__(self, c1, c2, k=1, s=1, p=None, g=1, act=True): # ch_in, ch_out, kernel, stride, padding, groups
super(Conv, self).__init__()
p = k // 2 if isinstance(k, int) else [x // 2 for x in k] # padding
self.conv = nn.Conv2d(c1, c2, k, s, p, groups=g, bias=False)
self.conv = nn.Conv2d(c1, c2, k, s, p or autopad(k), groups=g, bias=False)
self.bn = nn.BatchNorm2d(c2)
self.act = nn.LeakyReLU(0.1, inplace=True) if act else nn.Identity()

@@ -46,7 +49,7 @@ class BottleneckCSP(nn.Module):
self.cv1 = Conv(c1, c_, 1, 1)
self.cv2 = nn.Conv2d(c1, c_, 1, 1, bias=False)
self.cv3 = nn.Conv2d(c_, c_, 1, 1, bias=False)
self.cv4 = Conv(c2, c2, 1, 1)
self.cv4 = Conv(2 * c_, c2, 1, 1)
self.bn = nn.BatchNorm2d(2 * c_) # applied to cat(cv2, cv3)
self.act = nn.LeakyReLU(0.1, inplace=True)
self.m = nn.Sequential(*[Bottleneck(c_, c_, shortcut, g, e=1.0) for _ in range(n)])
@@ -79,9 +82,9 @@ class Flatten(nn.Module):

class Focus(nn.Module):
# Focus wh information into c-space
def __init__(self, c1, c2, k=1):
def __init__(self, c1, c2, k=1, s=1, p=None, g=1, act=True): # ch_in, ch_out, kernel, stride, padding, groups
super(Focus, self).__init__()
self.conv = Conv(c1 * 4, c2, k, 1)
self.conv = Conv(c1 * 4, c2, k, s, p, g, act)

def forward(self, x): # x(b,c,w,h) -> y(b,4c,w/2,h/2)
return self.conv(torch.cat([x[..., ::2, ::2], x[..., 1::2, ::2], x[..., ::2, 1::2], x[..., 1::2, 1::2]], 1))

+ 34
- 0
models/experimental.py Bestand weergeven

@@ -1,6 +1,40 @@
# This file contains experimental modules

from models.common import *


class CrossConv(nn.Module):
# Cross Convolution
def __init__(self, c1, c2, shortcut=True, g=1, e=0.5): # ch_in, ch_out, shortcut, groups, expansion
super(CrossConv, self).__init__()
c_ = int(c2 * e) # hidden channels
self.cv1 = Conv(c1, c_, (1, 3), 1)
self.cv2 = Conv(c_, c2, (3, 1), 1, g=g)
self.add = shortcut and c1 == c2

def forward(self, x):
return x + self.cv2(self.cv1(x)) if self.add else self.cv2(self.cv1(x))


class C3(nn.Module):
# Cross Convolution CSP
def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5): # ch_in, ch_out, number, shortcut, groups, expansion
super(C3, self).__init__()
c_ = int(c2 * e) # hidden channels
self.cv1 = Conv(c1, c_, 1, 1)
self.cv2 = nn.Conv2d(c1, c_, 1, 1, bias=False)
self.cv3 = nn.Conv2d(c_, c_, 1, 1, bias=False)
self.cv4 = Conv(2 * c_, c2, 1, 1)
self.bn = nn.BatchNorm2d(2 * c_) # applied to cat(cv2, cv3)
self.act = nn.LeakyReLU(0.1, inplace=True)
self.m = nn.Sequential(*[CrossConv(c_, c_, shortcut, g, e=1.0) for _ in range(n)])

def forward(self, x):
y1 = self.cv3(self.m(self.cv1(x)))
y2 = self.cv2(x)
return self.cv4(self.act(self.bn(torch.cat((y1, y2), dim=1))))


class Sum(nn.Module):
# Weighted sum of 2 or more layers https://arxiv.org/abs/1911.09070
def __init__(self, n, weight=False): # n: number of inputs

Laden…
Annuleren
Opslaan