* PyCharm reformat * YAML reformat * Markdown reformatmodifyDataloader
@@ -7,21 +7,24 @@ assignees: '' | |||
--- | |||
Before submitting a bug report, please be aware that your issue **must be reproducible** with all of the following, otherwise it is non-actionable, and we can not help you: | |||
- **Current repo**: run `git fetch && git status -uno` to check and `git pull` to update repo | |||
- **Common dataset**: coco.yaml or coco128.yaml | |||
- **Common environment**: Colab, Google Cloud, or Docker image. See https://github.com/ultralytics/yolov5#environments | |||
If this is a custom dataset/training question you **must include** your `train*.jpg`, `val*.jpg` and `results.png` figures, or we can not help you. You can generate these with `utils.plot_results()`. | |||
Before submitting a bug report, please be aware that your issue **must be reproducible** with all of the following, | |||
otherwise it is non-actionable, and we can not help you: | |||
- **Current repo**: run `git fetch && git status -uno` to check and `git pull` to update repo | |||
- **Common dataset**: coco.yaml or coco128.yaml | |||
- **Common environment**: Colab, Google Cloud, or Docker image. See https://github.com/ultralytics/yolov5#environments | |||
If this is a custom dataset/training question you **must include** your `train*.jpg`, `val*.jpg` and `results.png` | |||
figures, or we can not help you. You can generate these with `utils.plot_results()`. | |||
## 🐛 Bug | |||
A clear and concise description of what the bug is. | |||
A clear and concise description of what the bug is. | |||
## To Reproduce (REQUIRED) | |||
Input: | |||
``` | |||
import torch | |||
@@ -30,6 +33,7 @@ c = a / 0 | |||
``` | |||
Output: | |||
``` | |||
Traceback (most recent call last): | |||
File "/Users/glennjocher/opt/anaconda3/envs/env1/lib/python3.7/site-packages/IPython/core/interactiveshell.py", line 3331, in run_code | |||
@@ -39,17 +43,17 @@ Traceback (most recent call last): | |||
RuntimeError: ZeroDivisionError | |||
``` | |||
## Expected behavior | |||
A clear and concise description of what you expected to happen. | |||
A clear and concise description of what you expected to happen. | |||
## Environment | |||
If applicable, add screenshots to help explain your problem. | |||
- OS: [e.g. Ubuntu] | |||
- GPU [e.g. 2080 Ti] | |||
If applicable, add screenshots to help explain your problem. | |||
- OS: [e.g. Ubuntu] | |||
- GPU [e.g. 2080 Ti] | |||
## Additional context | |||
Add any other context about the problem here. |
@@ -13,7 +13,8 @@ assignees: '' | |||
## Motivation | |||
<!-- Please outline the motivation for the proposal. Is your feature request related to a problem? e.g., I'm always frustrated when [...]. If this is related to another GitHub issue, please link here too --> | |||
<!-- Please outline the motivation for the proposal. Is your feature request related to a problem? | |||
e.g., I'm always frustrated when [...]. If this is related to another GitHub issue, please link here too --> | |||
## Pitch | |||
@@ -9,5 +9,4 @@ assignees: '' | |||
## ❔Question | |||
## Additional context |
@@ -8,32 +8,44 @@ We love your input! We want to make contributing to YOLOv5 as easy and transpare | |||
- Proposing a new feature | |||
- Becoming a maintainer | |||
YOLOv5 works so well due to our combined community effort, and for every small improvement you contribute you will be helping push the frontiers of what's possible in AI 😃! | |||
YOLOv5 works so well due to our combined community effort, and for every small improvement you contribute you will be | |||
helping push the frontiers of what's possible in AI 😃! | |||
## Submitting a Pull Request (PR) 🛠️ | |||
Submitting a PR is easy! This example shows how to submit a PR for updating `requirements.txt` in 4 steps: | |||
### 1. Select File to Update | |||
Select `requirements.txt` to update by clicking on it in GitHub. | |||
<p align="center"><img width="800" alt="PR_step1" src="https://user-images.githubusercontent.com/26833433/122260847-08be2600-ced4-11eb-828b-8287ace4136c.png"></p> | |||
### 2. Click 'Edit this file' | |||
Button is in top-right corner. | |||
<p align="center"><img width="800" alt="PR_step2" src="https://user-images.githubusercontent.com/26833433/122260844-06f46280-ced4-11eb-9eec-b8a24be519ca.png"></p> | |||
### 3. Make Changes | |||
Change `matplotlib` version from `3.2.2` to `3.3`. | |||
<p align="center"><img width="800" alt="PR_step3" src="https://user-images.githubusercontent.com/26833433/122260853-0a87e980-ced4-11eb-9fd2-3650fb6e0842.png"></p> | |||
### 4. Preview Changes and Submit PR | |||
Click on the **Preview changes** tab to verify your updates. At the bottom of the screen select 'Create a **new branch** for this commit', assign your branch a descriptive name such as `fix/matplotlib_version` and click the green **Propose changes** button. All done, your PR is now submitted to YOLOv5 for review and approval 😃! | |||
Click on the **Preview changes** tab to verify your updates. At the bottom of the screen select 'Create a **new branch** | |||
for this commit', assign your branch a descriptive name such as `fix/matplotlib_version` and click the green **Propose | |||
changes** button. All done, your PR is now submitted to YOLOv5 for review and approval 😃! | |||
<p align="center"><img width="800" alt="PR_step4" src="https://user-images.githubusercontent.com/26833433/122260856-0b208000-ced4-11eb-8e8e-77b6151cbcc3.png"></p> | |||
### PR recommendations | |||
To allow your work to be integrated as seamlessly as possible, we advise you to: | |||
- ✅ Verify your PR is **up-to-date with origin/master.** If your PR is behind origin/master an automatic [GitHub actions](https://github.com/ultralytics/yolov5/blob/master/.github/workflows/rebase.yml) rebase may be attempted by including the /rebase command in a comment body, or by running the following code, replacing 'feature' with the name of your local branch: | |||
- ✅ Verify your PR is **up-to-date with origin/master.** If your PR is behind origin/master an | |||
automatic [GitHub actions](https://github.com/ultralytics/yolov5/blob/master/.github/workflows/rebase.yml) rebase may | |||
be attempted by including the /rebase command in a comment body, or by running the following code, replacing 'feature' | |||
with the name of your local branch: | |||
```bash | |||
git remote add upstream https://github.com/ultralytics/yolov5.git | |||
git fetch upstream | |||
@@ -41,30 +53,42 @@ git checkout feature # <----- replace 'feature' with local branch name | |||
git merge upstream/master | |||
git push -u origin -f | |||
``` | |||
- ✅ Verify all Continuous Integration (CI) **checks are passing**. | |||
- ✅ Reduce changes to the absolute **minimum** required for your bug fix or feature addition. _"It is not daily increase but daily decrease, hack away the unessential. The closer to the source, the less wastage there is."_ -Bruce Lee | |||
- ✅ Verify all Continuous Integration (CI) **checks are passing**. | |||
- ✅ Reduce changes to the absolute **minimum** required for your bug fix or feature addition. _"It is not daily increase | |||
but daily decrease, hack away the unessential. The closer to the source, the less wastage there is."_ -Bruce Lee | |||
## Submitting a Bug Report 🐛 | |||
If you spot a problem with YOLOv5 please submit a Bug Report! | |||
For us to start investigating a possibel problem we need to be able to reproduce it ourselves first. We've created a few short guidelines below to help users provide what we need in order to get started. | |||
For us to start investigating a possibel problem we need to be able to reproduce it ourselves first. We've created a few | |||
short guidelines below to help users provide what we need in order to get started. | |||
When asking a question, people will be better able to provide help if you provide **code** that they can easily understand and use to **reproduce** the problem. This is referred to by community members as creating a [minimum reproducible example](https://stackoverflow.com/help/minimal-reproducible-example). Your code that reproduces the problem should be: | |||
When asking a question, people will be better able to provide help if you provide **code** that they can easily | |||
understand and use to **reproduce** the problem. This is referred to by community members as creating | |||
a [minimum reproducible example](https://stackoverflow.com/help/minimal-reproducible-example). Your code that reproduces | |||
the problem should be: | |||
* ✅ **Minimal** – Use as little code as possible that still produces the same problem | |||
* ✅ **Complete** – Provide **all** parts someone else needs to reproduce your problem in the question itself | |||
* ✅ **Reproducible** – Test the code you're about to provide to make sure it reproduces the problem | |||
In addition to the above requirements, for [Ultralytics](https://ultralytics.com/) to provide assistance your code should be: | |||
* ✅ **Current** – Verify that your code is up-to-date with current GitHub [master](https://github.com/ultralytics/yolov5/tree/master), and if necessary `git pull` or `git clone` a new copy to ensure your problem has not already been resolved by previous commits. | |||
* ✅ **Unmodified** – Your problem must be reproducible without any modifications to the codebase in this repository. [Ultralytics](https://ultralytics.com/) does not provide support for custom code ⚠️. | |||
In addition to the above requirements, for [Ultralytics](https://ultralytics.com/) to provide assistance your code | |||
should be: | |||
If you believe your problem meets all of the above criteria, please close this issue and raise a new one using the 🐛 **Bug Report** [template](https://github.com/ultralytics/yolov5/issues/new/choose) and providing a [minimum reproducible example](https://stackoverflow.com/help/minimal-reproducible-example) to help us better understand and diagnose your problem. | |||
* ✅ **Current** – Verify that your code is up-to-date with current | |||
GitHub [master](https://github.com/ultralytics/yolov5/tree/master), and if necessary `git pull` or `git clone` a new | |||
copy to ensure your problem has not already been resolved by previous commits. | |||
* ✅ **Unmodified** – Your problem must be reproducible without any modifications to the codebase in this | |||
repository. [Ultralytics](https://ultralytics.com/) does not provide support for custom code ⚠️. | |||
If you believe your problem meets all of the above criteria, please close this issue and raise a new one using the 🐛 ** | |||
Bug Report** [template](https://github.com/ultralytics/yolov5/issues/new/choose) and providing | |||
a [minimum reproducible example](https://stackoverflow.com/help/minimal-reproducible-example) to help us better | |||
understand and diagnose your problem. | |||
## License | |||
By contributing, you agree that your contributions will be licensed under the [GPL-3.0 license](https://choosealicense.com/licenses/gpl-3.0/) | |||
By contributing, you agree that your contributions will be licensed under | |||
the [GPL-3.0 license](https://choosealicense.com/licenses/gpl-3.0/) |
@@ -52,31 +52,33 @@ YOLOv5 🚀 is a family of object detection architectures and models pretrained | |||
</div> | |||
## <div align="center">Documentation</div> | |||
See the [YOLOv5 Docs](https://docs.ultralytics.com) for full documentation on training, testing and deployment. | |||
## <div align="center">Quick Start Examples</div> | |||
<details open> | |||
<summary>Install</summary> | |||
[**Python>=3.6.0**](https://www.python.org/) is required with all [requirements.txt](https://github.com/ultralytics/yolov5/blob/master/requirements.txt) installed including [**PyTorch>=1.7**](https://pytorch.org/get-started/locally/): | |||
[**Python>=3.6.0**](https://www.python.org/) is required with all | |||
[requirements.txt](https://github.com/ultralytics/yolov5/blob/master/requirements.txt) installed including | |||
[**PyTorch>=1.7**](https://pytorch.org/get-started/locally/): | |||
<!-- $ sudo apt update && apt install -y libgl1-mesa-glx libsm6 libxext6 libxrender-dev --> | |||
```bash | |||
$ git clone https://github.com/ultralytics/yolov5 | |||
$ cd yolov5 | |||
$ pip install -r requirements.txt | |||
``` | |||
</details> | |||
<details open> | |||
<summary>Inference</summary> | |||
Inference with YOLOv5 and [PyTorch Hub](https://github.com/ultralytics/yolov5/issues/36). Models automatically download from the [latest YOLOv5 release](https://github.com/ultralytics/yolov5/releases). | |||
Inference with YOLOv5 and [PyTorch Hub](https://github.com/ultralytics/yolov5/issues/36). Models automatically download | |||
from the [latest YOLOv5 release](https://github.com/ultralytics/yolov5/releases). | |||
```python | |||
import torch | |||
@@ -85,7 +87,7 @@ import torch | |||
model = torch.hub.load('ultralytics/yolov5', 'yolov5s') # or yolov5m, yolov5l, yolov5x, custom | |||
# Images | |||
img = 'https://ultralytics.com/images/zidane.jpg' # or PosixPath, PIL, OpenCV, numpy, list | |||
img = 'https://ultralytics.com/images/zidane.jpg' # or file, Path, PIL, OpenCV, numpy, list | |||
# Inference | |||
results = model(img) | |||
@@ -101,7 +103,9 @@ results.print() # or .show(), .save(), .crop(), .pandas(), etc. | |||
<details> | |||
<summary>Inference with detect.py</summary> | |||
`detect.py` runs inference on a variety of sources, downloading models automatically from the [latest YOLOv5 release](https://github.com/ultralytics/yolov5/releases) and saving results to `runs/detect`. | |||
`detect.py` runs inference on a variety of sources, downloading models automatically from | |||
the [latest YOLOv5 release](https://github.com/ultralytics/yolov5/releases) and saving results to `runs/detect`. | |||
```bash | |||
$ python detect.py --source 0 # webcam | |||
file.jpg # image | |||
@@ -117,13 +121,18 @@ $ python detect.py --source 0 # webcam | |||
<details> | |||
<summary>Training</summary> | |||
Run commands below to reproduce results on [COCO](https://github.com/ultralytics/yolov5/blob/master/data/scripts/get_coco.sh) dataset (dataset auto-downloads on first use). Training times for YOLOv5s/m/l/x are 2/4/6/8 days on a single V100 (multi-GPU times faster). Use the largest `--batch-size` your GPU allows (batch sizes shown for 16 GB devices). | |||
Run commands below to reproduce results | |||
on [COCO](https://github.com/ultralytics/yolov5/blob/master/data/scripts/get_coco.sh) dataset (dataset auto-downloads on | |||
first use). Training times for YOLOv5s/m/l/x are 2/4/6/8 days on a single V100 (multi-GPU times faster). Use the | |||
largest `--batch-size` your GPU allows (batch sizes shown for 16 GB devices). | |||
```bash | |||
$ python train.py --data coco.yaml --cfg yolov5s.yaml --weights '' --batch-size 64 | |||
yolov5m 40 | |||
yolov5l 24 | |||
yolov5x 16 | |||
``` | |||
<img width="800" src="https://user-images.githubusercontent.com/26833433/90222759-949d8800-ddc1-11ea-9fa1-1c97eed2b963.png"> | |||
</details> | |||
@@ -132,7 +141,8 @@ $ python train.py --data coco.yaml --cfg yolov5s.yaml --weights '' --batch-size | |||
<summary>Tutorials</summary> | |||
* [Train Custom Data](https://github.com/ultralytics/yolov5/wiki/Train-Custom-Data) 🚀 RECOMMENDED | |||
* [Tips for Best Training Results](https://github.com/ultralytics/yolov5/wiki/Tips-for-Best-Training-Results) ☘️ RECOMMENDED | |||
* [Tips for Best Training Results](https://github.com/ultralytics/yolov5/wiki/Tips-for-Best-Training-Results) ☘️ | |||
RECOMMENDED | |||
* [Weights & Biases Logging](https://github.com/ultralytics/yolov5/issues/1289) 🌟 NEW | |||
* [Supervisely Ecosystem](https://github.com/ultralytics/yolov5/issues/2518) 🌟 NEW | |||
* [Multi-GPU Training](https://github.com/ultralytics/yolov5/issues/475) | |||
@@ -147,10 +157,11 @@ $ python train.py --data coco.yaml --cfg yolov5s.yaml --weights '' --batch-size | |||
</details> | |||
## <div align="center">Environments and Integrations</div> | |||
Get started in seconds with our verified environments and integrations, including [Weights & Biases](https://wandb.ai/site?utm_campaign=repo_yolo_readme) for automatic YOLOv5 experiment logging. Click each icon below for details. | |||
Get started in seconds with our verified environments and integrations, | |||
including [Weights & Biases](https://wandb.ai/site?utm_campaign=repo_yolo_readme) for automatic YOLOv5 experiment | |||
logging. Click each icon below for details. | |||
<div align="center"> | |||
<a href="https://colab.research.google.com/github/ultralytics/yolov5/blob/master/tutorial.ipynb"> | |||
@@ -173,33 +184,33 @@ Get started in seconds with our verified environments and integrations, includin | |||
</a> | |||
</div> | |||
## <div align="center">Compete and Win</div> | |||
We are super excited about our first-ever Ultralytics YOLOv5 🚀 EXPORT Competition with **$10,000** in cash prizes! | |||
We are super excited about our first-ever Ultralytics YOLOv5 🚀 EXPORT Competition with **$10,000** in cash prizes! | |||
<p align="center"> | |||
<a href="https://github.com/ultralytics/yolov5/discussions/3213"> | |||
<img width="850" src="https://github.com/ultralytics/yolov5/releases/download/v1.0/banner-export-competition.png"></a> | |||
</p> | |||
## <div align="center">Why YOLOv5</div> | |||
<p align="center"><img width="800" src="https://user-images.githubusercontent.com/26833433/114313216-f0a5e100-9af5-11eb-8445-c682b60da2e3.png"></p> | |||
<details> | |||
<summary>YOLOv5-P5 640 Figure (click to expand)</summary> | |||
<p align="center"><img width="800" src="https://user-images.githubusercontent.com/26833433/114313219-f1d70e00-9af5-11eb-9973-52b1f98d321a.png"></p> | |||
</details> | |||
<details> | |||
<summary>Figure Notes (click to expand)</summary> | |||
* GPU Speed measures end-to-end time per image averaged over 5000 COCO val2017 images using a V100 GPU with batch size 32, and includes image preprocessing, PyTorch FP16 inference, postprocessing and NMS. | |||
* EfficientDet data from [google/automl](https://github.com/google/automl) at batch size 8. | |||
* **Reproduce** by `python val.py --task study --data coco.yaml --iou 0.7 --weights yolov5s6.pt yolov5m6.pt yolov5l6.pt yolov5x6.pt` | |||
</details> | |||
* GPU Speed measures end-to-end time per image averaged over 5000 COCO val2017 images using a V100 GPU with batch size | |||
32, and includes image preprocessing, PyTorch FP16 inference, postprocessing and NMS. | |||
* EfficientDet data from [google/automl](https://github.com/google/automl) at batch size 8. | |||
* **Reproduce** by | |||
`python val.py --task study --data coco.yaml --iou 0.7 --weights yolov5s6.pt yolov5m6.pt yolov5l6.pt yolov5x6.pt` | |||
</details> | |||
### Pretrained Checkpoints | |||
@@ -221,24 +232,30 @@ We are super excited about our first-ever Ultralytics YOLOv5 🚀 EXPORT Competi | |||
<details> | |||
<summary>Table Notes (click to expand)</summary> | |||
* AP<sup>test</sup> denotes COCO [test-dev2017](http://cocodataset.org/#upload) server results, all other AP results denote val2017 accuracy. | |||
* AP values are for single-model single-scale unless otherwise noted. **Reproduce mAP** by `python val.py --data coco.yaml --img 640 --conf 0.001 --iou 0.65` | |||
* Speed<sub>GPU</sub> averaged over 5000 COCO val2017 images using a GCP [n1-standard-16](https://cloud.google.com/compute/docs/machine-types#n1_standard_machine_types) V100 instance, and includes FP16 inference, postprocessing and NMS. **Reproduce speed** by `python val.py --data coco.yaml --img 640 --conf 0.25 --iou 0.45 --half` | |||
* All checkpoints are trained to 300 epochs with default settings and hyperparameters (no autoaugmentation). | |||
* Test Time Augmentation ([TTA](https://github.com/ultralytics/yolov5/issues/303)) includes reflection and scale augmentation. **Reproduce TTA** by `python val.py --data coco.yaml --img 1536 --iou 0.7 --augment` | |||
</details> | |||
* AP<sup>test</sup> denotes COCO [test-dev2017](http://cocodataset.org/#upload) server results, all other AP results | |||
denote val2017 accuracy. | |||
* AP values are for single-model single-scale unless otherwise noted. **Reproduce mAP** | |||
by `python val.py --data coco.yaml --img 640 --conf 0.001 --iou 0.65` | |||
* Speed<sub>GPU</sub> averaged over 5000 COCO val2017 images using a | |||
GCP [n1-standard-16](https://cloud.google.com/compute/docs/machine-types#n1_standard_machine_types) V100 instance, and | |||
includes FP16 inference, postprocessing and NMS. **Reproduce speed** | |||
by `python val.py --data coco.yaml --img 640 --conf 0.25 --iou 0.45 --half` | |||
* All checkpoints are trained to 300 epochs with default settings and hyperparameters (no autoaugmentation). | |||
* Test Time Augmentation ([TTA](https://github.com/ultralytics/yolov5/issues/303)) includes reflection and scale | |||
augmentation. **Reproduce TTA** by `python val.py --data coco.yaml --img 1536 --iou 0.7 --augment` | |||
## <div align="center">Contribute</div> | |||
</details> | |||
We love your input! We want to make contributing to YOLOv5 as easy and transparent as possible. Please see our [Contributing Guide](CONTRIBUTING.md) to get started. | |||
## <div align="center">Contribute</div> | |||
We love your input! We want to make contributing to YOLOv5 as easy and transparent as possible. Please see | |||
our [Contributing Guide](CONTRIBUTING.md) to get started. | |||
## <div align="center">Contact</div> | |||
For issues running YOLOv5 please visit [GitHub Issues](https://github.com/ultralytics/yolov5/issues). For business or professional support requests please visit | |||
[https://ultralytics.com/contact](https://ultralytics.com/contact). | |||
For issues running YOLOv5 please visit [GitHub Issues](https://github.com/ultralytics/yolov5/issues). For business or | |||
professional support requests please visit [https://ultralytics.com/contact](https://ultralytics.com/contact). | |||
<br> | |||
@@ -15,7 +15,7 @@ test: Argoverse-1.1/images/test/ # test images (optional) https://eval.ai/web/c | |||
# Classes | |||
nc: 8 # number of classes | |||
names: [ 'person', 'bicycle', 'car', 'motorcycle', 'bus', 'truck', 'traffic_light', 'stop_sign' ] # class names | |||
names: ['person', 'bicycle', 'car', 'motorcycle', 'bus', 'truck', 'traffic_light', 'stop_sign'] # class names | |||
# Download script/URL (optional) --------------------------------------------------------------------------------------- |
@@ -27,7 +27,7 @@ test: # test images (optional) 1276 images | |||
# Classes | |||
nc: 1 # number of classes | |||
names: [ 'wheat_head' ] # class names | |||
names: ['wheat_head'] # class names | |||
# Download script/URL (optional) --------------------------------------------------------------------------------------- |
@@ -15,47 +15,47 @@ test: # test images (optional) | |||
# Classes | |||
nc: 365 # number of classes | |||
names: [ 'Person', 'Sneakers', 'Chair', 'Other Shoes', 'Hat', 'Car', 'Lamp', 'Glasses', 'Bottle', 'Desk', 'Cup', | |||
'Street Lights', 'Cabinet/shelf', 'Handbag/Satchel', 'Bracelet', 'Plate', 'Picture/Frame', 'Helmet', 'Book', | |||
'Gloves', 'Storage box', 'Boat', 'Leather Shoes', 'Flower', 'Bench', 'Potted Plant', 'Bowl/Basin', 'Flag', | |||
'Pillow', 'Boots', 'Vase', 'Microphone', 'Necklace', 'Ring', 'SUV', 'Wine Glass', 'Belt', 'Monitor/TV', | |||
'Backpack', 'Umbrella', 'Traffic Light', 'Speaker', 'Watch', 'Tie', 'Trash bin Can', 'Slippers', 'Bicycle', | |||
'Stool', 'Barrel/bucket', 'Van', 'Couch', 'Sandals', 'Basket', 'Drum', 'Pen/Pencil', 'Bus', 'Wild Bird', | |||
'High Heels', 'Motorcycle', 'Guitar', 'Carpet', 'Cell Phone', 'Bread', 'Camera', 'Canned', 'Truck', | |||
'Traffic cone', 'Cymbal', 'Lifesaver', 'Towel', 'Stuffed Toy', 'Candle', 'Sailboat', 'Laptop', 'Awning', | |||
'Bed', 'Faucet', 'Tent', 'Horse', 'Mirror', 'Power outlet', 'Sink', 'Apple', 'Air Conditioner', 'Knife', | |||
'Hockey Stick', 'Paddle', 'Pickup Truck', 'Fork', 'Traffic Sign', 'Balloon', 'Tripod', 'Dog', 'Spoon', 'Clock', | |||
'Pot', 'Cow', 'Cake', 'Dinning Table', 'Sheep', 'Hanger', 'Blackboard/Whiteboard', 'Napkin', 'Other Fish', | |||
'Orange/Tangerine', 'Toiletry', 'Keyboard', 'Tomato', 'Lantern', 'Machinery Vehicle', 'Fan', | |||
'Green Vegetables', 'Banana', 'Baseball Glove', 'Airplane', 'Mouse', 'Train', 'Pumpkin', 'Soccer', 'Skiboard', | |||
'Luggage', 'Nightstand', 'Tea pot', 'Telephone', 'Trolley', 'Head Phone', 'Sports Car', 'Stop Sign', | |||
'Dessert', 'Scooter', 'Stroller', 'Crane', 'Remote', 'Refrigerator', 'Oven', 'Lemon', 'Duck', 'Baseball Bat', | |||
'Surveillance Camera', 'Cat', 'Jug', 'Broccoli', 'Piano', 'Pizza', 'Elephant', 'Skateboard', 'Surfboard', | |||
'Gun', 'Skating and Skiing shoes', 'Gas stove', 'Donut', 'Bow Tie', 'Carrot', 'Toilet', 'Kite', 'Strawberry', | |||
'Other Balls', 'Shovel', 'Pepper', 'Computer Box', 'Toilet Paper', 'Cleaning Products', 'Chopsticks', | |||
'Microwave', 'Pigeon', 'Baseball', 'Cutting/chopping Board', 'Coffee Table', 'Side Table', 'Scissors', | |||
'Marker', 'Pie', 'Ladder', 'Snowboard', 'Cookies', 'Radiator', 'Fire Hydrant', 'Basketball', 'Zebra', 'Grape', | |||
'Giraffe', 'Potato', 'Sausage', 'Tricycle', 'Violin', 'Egg', 'Fire Extinguisher', 'Candy', 'Fire Truck', | |||
'Billiards', 'Converter', 'Bathtub', 'Wheelchair', 'Golf Club', 'Briefcase', 'Cucumber', 'Cigar/Cigarette', | |||
'Paint Brush', 'Pear', 'Heavy Truck', 'Hamburger', 'Extractor', 'Extension Cord', 'Tong', 'Tennis Racket', | |||
'Folder', 'American Football', 'earphone', 'Mask', 'Kettle', 'Tennis', 'Ship', 'Swing', 'Coffee Machine', | |||
'Slide', 'Carriage', 'Onion', 'Green beans', 'Projector', 'Frisbee', 'Washing Machine/Drying Machine', | |||
'Chicken', 'Printer', 'Watermelon', 'Saxophone', 'Tissue', 'Toothbrush', 'Ice cream', 'Hot-air balloon', | |||
'Cello', 'French Fries', 'Scale', 'Trophy', 'Cabbage', 'Hot dog', 'Blender', 'Peach', 'Rice', 'Wallet/Purse', | |||
'Volleyball', 'Deer', 'Goose', 'Tape', 'Tablet', 'Cosmetics', 'Trumpet', 'Pineapple', 'Golf Ball', | |||
'Ambulance', 'Parking meter', 'Mango', 'Key', 'Hurdle', 'Fishing Rod', 'Medal', 'Flute', 'Brush', 'Penguin', | |||
'Megaphone', 'Corn', 'Lettuce', 'Garlic', 'Swan', 'Helicopter', 'Green Onion', 'Sandwich', 'Nuts', | |||
'Speed Limit Sign', 'Induction Cooker', 'Broom', 'Trombone', 'Plum', 'Rickshaw', 'Goldfish', 'Kiwi fruit', | |||
'Router/modem', 'Poker Card', 'Toaster', 'Shrimp', 'Sushi', 'Cheese', 'Notepaper', 'Cherry', 'Pliers', 'CD', | |||
'Pasta', 'Hammer', 'Cue', 'Avocado', 'Hamimelon', 'Flask', 'Mushroom', 'Screwdriver', 'Soap', 'Recorder', | |||
'Bear', 'Eggplant', 'Board Eraser', 'Coconut', 'Tape Measure/Ruler', 'Pig', 'Showerhead', 'Globe', 'Chips', | |||
'Steak', 'Crosswalk Sign', 'Stapler', 'Camel', 'Formula 1', 'Pomegranate', 'Dishwasher', 'Crab', | |||
'Hoverboard', 'Meat ball', 'Rice Cooker', 'Tuba', 'Calculator', 'Papaya', 'Antelope', 'Parrot', 'Seal', | |||
'Butterfly', 'Dumbbell', 'Donkey', 'Lion', 'Urinal', 'Dolphin', 'Electric Drill', 'Hair Dryer', 'Egg tart', | |||
'Jellyfish', 'Treadmill', 'Lighter', 'Grapefruit', 'Game board', 'Mop', 'Radish', 'Baozi', 'Target', 'French', | |||
'Spring Rolls', 'Monkey', 'Rabbit', 'Pencil Case', 'Yak', 'Red Cabbage', 'Binoculars', 'Asparagus', 'Barbell', | |||
'Scallop', 'Noddles', 'Comb', 'Dumpling', 'Oyster', 'Table Tennis paddle', 'Cosmetics Brush/Eyeliner Pencil', | |||
'Chainsaw', 'Eraser', 'Lobster', 'Durian', 'Okra', 'Lipstick', 'Cosmetics Mirror', 'Curling', 'Table Tennis' ] | |||
names: ['Person', 'Sneakers', 'Chair', 'Other Shoes', 'Hat', 'Car', 'Lamp', 'Glasses', 'Bottle', 'Desk', 'Cup', | |||
'Street Lights', 'Cabinet/shelf', 'Handbag/Satchel', 'Bracelet', 'Plate', 'Picture/Frame', 'Helmet', 'Book', | |||
'Gloves', 'Storage box', 'Boat', 'Leather Shoes', 'Flower', 'Bench', 'Potted Plant', 'Bowl/Basin', 'Flag', | |||
'Pillow', 'Boots', 'Vase', 'Microphone', 'Necklace', 'Ring', 'SUV', 'Wine Glass', 'Belt', 'Monitor/TV', | |||
'Backpack', 'Umbrella', 'Traffic Light', 'Speaker', 'Watch', 'Tie', 'Trash bin Can', 'Slippers', 'Bicycle', | |||
'Stool', 'Barrel/bucket', 'Van', 'Couch', 'Sandals', 'Basket', 'Drum', 'Pen/Pencil', 'Bus', 'Wild Bird', | |||
'High Heels', 'Motorcycle', 'Guitar', 'Carpet', 'Cell Phone', 'Bread', 'Camera', 'Canned', 'Truck', | |||
'Traffic cone', 'Cymbal', 'Lifesaver', 'Towel', 'Stuffed Toy', 'Candle', 'Sailboat', 'Laptop', 'Awning', | |||
'Bed', 'Faucet', 'Tent', 'Horse', 'Mirror', 'Power outlet', 'Sink', 'Apple', 'Air Conditioner', 'Knife', | |||
'Hockey Stick', 'Paddle', 'Pickup Truck', 'Fork', 'Traffic Sign', 'Balloon', 'Tripod', 'Dog', 'Spoon', 'Clock', | |||
'Pot', 'Cow', 'Cake', 'Dinning Table', 'Sheep', 'Hanger', 'Blackboard/Whiteboard', 'Napkin', 'Other Fish', | |||
'Orange/Tangerine', 'Toiletry', 'Keyboard', 'Tomato', 'Lantern', 'Machinery Vehicle', 'Fan', | |||
'Green Vegetables', 'Banana', 'Baseball Glove', 'Airplane', 'Mouse', 'Train', 'Pumpkin', 'Soccer', 'Skiboard', | |||
'Luggage', 'Nightstand', 'Tea pot', 'Telephone', 'Trolley', 'Head Phone', 'Sports Car', 'Stop Sign', | |||
'Dessert', 'Scooter', 'Stroller', 'Crane', 'Remote', 'Refrigerator', 'Oven', 'Lemon', 'Duck', 'Baseball Bat', | |||
'Surveillance Camera', 'Cat', 'Jug', 'Broccoli', 'Piano', 'Pizza', 'Elephant', 'Skateboard', 'Surfboard', | |||
'Gun', 'Skating and Skiing shoes', 'Gas stove', 'Donut', 'Bow Tie', 'Carrot', 'Toilet', 'Kite', 'Strawberry', | |||
'Other Balls', 'Shovel', 'Pepper', 'Computer Box', 'Toilet Paper', 'Cleaning Products', 'Chopsticks', | |||
'Microwave', 'Pigeon', 'Baseball', 'Cutting/chopping Board', 'Coffee Table', 'Side Table', 'Scissors', | |||
'Marker', 'Pie', 'Ladder', 'Snowboard', 'Cookies', 'Radiator', 'Fire Hydrant', 'Basketball', 'Zebra', 'Grape', | |||
'Giraffe', 'Potato', 'Sausage', 'Tricycle', 'Violin', 'Egg', 'Fire Extinguisher', 'Candy', 'Fire Truck', | |||
'Billiards', 'Converter', 'Bathtub', 'Wheelchair', 'Golf Club', 'Briefcase', 'Cucumber', 'Cigar/Cigarette', | |||
'Paint Brush', 'Pear', 'Heavy Truck', 'Hamburger', 'Extractor', 'Extension Cord', 'Tong', 'Tennis Racket', | |||
'Folder', 'American Football', 'earphone', 'Mask', 'Kettle', 'Tennis', 'Ship', 'Swing', 'Coffee Machine', | |||
'Slide', 'Carriage', 'Onion', 'Green beans', 'Projector', 'Frisbee', 'Washing Machine/Drying Machine', | |||
'Chicken', 'Printer', 'Watermelon', 'Saxophone', 'Tissue', 'Toothbrush', 'Ice cream', 'Hot-air balloon', | |||
'Cello', 'French Fries', 'Scale', 'Trophy', 'Cabbage', 'Hot dog', 'Blender', 'Peach', 'Rice', 'Wallet/Purse', | |||
'Volleyball', 'Deer', 'Goose', 'Tape', 'Tablet', 'Cosmetics', 'Trumpet', 'Pineapple', 'Golf Ball', | |||
'Ambulance', 'Parking meter', 'Mango', 'Key', 'Hurdle', 'Fishing Rod', 'Medal', 'Flute', 'Brush', 'Penguin', | |||
'Megaphone', 'Corn', 'Lettuce', 'Garlic', 'Swan', 'Helicopter', 'Green Onion', 'Sandwich', 'Nuts', | |||
'Speed Limit Sign', 'Induction Cooker', 'Broom', 'Trombone', 'Plum', 'Rickshaw', 'Goldfish', 'Kiwi fruit', | |||
'Router/modem', 'Poker Card', 'Toaster', 'Shrimp', 'Sushi', 'Cheese', 'Notepaper', 'Cherry', 'Pliers', 'CD', | |||
'Pasta', 'Hammer', 'Cue', 'Avocado', 'Hamimelon', 'Flask', 'Mushroom', 'Screwdriver', 'Soap', 'Recorder', | |||
'Bear', 'Eggplant', 'Board Eraser', 'Coconut', 'Tape Measure/Ruler', 'Pig', 'Showerhead', 'Globe', 'Chips', | |||
'Steak', 'Crosswalk Sign', 'Stapler', 'Camel', 'Formula 1', 'Pomegranate', 'Dishwasher', 'Crab', | |||
'Hoverboard', 'Meat ball', 'Rice Cooker', 'Tuba', 'Calculator', 'Papaya', 'Antelope', 'Parrot', 'Seal', | |||
'Butterfly', 'Dumbbell', 'Donkey', 'Lion', 'Urinal', 'Dolphin', 'Electric Drill', 'Hair Dryer', 'Egg tart', | |||
'Jellyfish', 'Treadmill', 'Lighter', 'Grapefruit', 'Game board', 'Mop', 'Radish', 'Baozi', 'Target', 'French', | |||
'Spring Rolls', 'Monkey', 'Rabbit', 'Pencil Case', 'Yak', 'Red Cabbage', 'Binoculars', 'Asparagus', 'Barbell', | |||
'Scallop', 'Noddles', 'Comb', 'Dumpling', 'Oyster', 'Table Tennis paddle', 'Cosmetics Brush/Eyeliner Pencil', | |||
'Chainsaw', 'Eraser', 'Lobster', 'Durian', 'Okra', 'Lipstick', 'Cosmetics Mirror', 'Curling', 'Table Tennis'] | |||
# Download script/URL (optional) --------------------------------------------------------------------------------------- |
@@ -15,7 +15,7 @@ test: test.txt # test images (optional) 2936 images | |||
# Classes | |||
nc: 1 # number of classes | |||
names: [ 'object' ] # class names | |||
names: ['object'] # class names | |||
# Download script/URL (optional) --------------------------------------------------------------------------------------- |
@@ -21,8 +21,8 @@ test: # test images (optional) | |||
# Classes | |||
nc: 20 # number of classes | |||
names: [ 'aeroplane', 'bicycle', 'bird', 'boat', 'bottle', 'bus', 'car', 'cat', 'chair', 'cow', 'diningtable', 'dog', | |||
'horse', 'motorbike', 'person', 'pottedplant', 'sheep', 'sofa', 'train', 'tvmonitor' ] # class names | |||
names: ['aeroplane', 'bicycle', 'bird', 'boat', 'bottle', 'bus', 'car', 'cat', 'chair', 'cow', 'diningtable', 'dog', | |||
'horse', 'motorbike', 'person', 'pottedplant', 'sheep', 'sofa', 'train', 'tvmonitor'] # class names | |||
# Download script/URL (optional) --------------------------------------------------------------------------------------- |
@@ -15,7 +15,7 @@ test: VisDrone2019-DET-test-dev/images # test images (optional) 1610 images | |||
# Classes | |||
nc: 10 # number of classes | |||
names: [ 'pedestrian', 'people', 'bicycle', 'car', 'van', 'truck', 'tricycle', 'awning-tricycle', 'bus', 'motor' ] | |||
names: ['pedestrian', 'people', 'bicycle', 'car', 'van', 'truck', 'tricycle', 'awning-tricycle', 'bus', 'motor'] | |||
# Download script/URL (optional) --------------------------------------------------------------------------------------- |
@@ -15,15 +15,15 @@ test: test-dev2017.txt # 20288 of 40670 images, submit to https://competitions. | |||
# Classes | |||
nc: 80 # number of classes | |||
names: [ 'person', 'bicycle', 'car', 'motorcycle', 'airplane', 'bus', 'train', 'truck', 'boat', 'traffic light', | |||
'fire hydrant', 'stop sign', 'parking meter', 'bench', 'bird', 'cat', 'dog', 'horse', 'sheep', 'cow', | |||
'elephant', 'bear', 'zebra', 'giraffe', 'backpack', 'umbrella', 'handbag', 'tie', 'suitcase', 'frisbee', | |||
'skis', 'snowboard', 'sports ball', 'kite', 'baseball bat', 'baseball glove', 'skateboard', 'surfboard', | |||
'tennis racket', 'bottle', 'wine glass', 'cup', 'fork', 'knife', 'spoon', 'bowl', 'banana', 'apple', | |||
'sandwich', 'orange', 'broccoli', 'carrot', 'hot dog', 'pizza', 'donut', 'cake', 'chair', 'couch', | |||
'potted plant', 'bed', 'dining table', 'toilet', 'tv', 'laptop', 'mouse', 'remote', 'keyboard', 'cell phone', | |||
'microwave', 'oven', 'toaster', 'sink', 'refrigerator', 'book', 'clock', 'vase', 'scissors', 'teddy bear', | |||
'hair drier', 'toothbrush' ] # class names | |||
names: ['person', 'bicycle', 'car', 'motorcycle', 'airplane', 'bus', 'train', 'truck', 'boat', 'traffic light', | |||
'fire hydrant', 'stop sign', 'parking meter', 'bench', 'bird', 'cat', 'dog', 'horse', 'sheep', 'cow', | |||
'elephant', 'bear', 'zebra', 'giraffe', 'backpack', 'umbrella', 'handbag', 'tie', 'suitcase', 'frisbee', | |||
'skis', 'snowboard', 'sports ball', 'kite', 'baseball bat', 'baseball glove', 'skateboard', 'surfboard', | |||
'tennis racket', 'bottle', 'wine glass', 'cup', 'fork', 'knife', 'spoon', 'bowl', 'banana', 'apple', | |||
'sandwich', 'orange', 'broccoli', 'carrot', 'hot dog', 'pizza', 'donut', 'cake', 'chair', 'couch', | |||
'potted plant', 'bed', 'dining table', 'toilet', 'tv', 'laptop', 'mouse', 'remote', 'keyboard', 'cell phone', | |||
'microwave', 'oven', 'toaster', 'sink', 'refrigerator', 'book', 'clock', 'vase', 'scissors', 'teddy bear', | |||
'hair drier', 'toothbrush'] # class names | |||
# Download script/URL (optional) |
@@ -15,15 +15,15 @@ test: # test images (optional) | |||
# Classes | |||
nc: 80 # number of classes | |||
names: [ 'person', 'bicycle', 'car', 'motorcycle', 'airplane', 'bus', 'train', 'truck', 'boat', 'traffic light', | |||
'fire hydrant', 'stop sign', 'parking meter', 'bench', 'bird', 'cat', 'dog', 'horse', 'sheep', 'cow', | |||
'elephant', 'bear', 'zebra', 'giraffe', 'backpack', 'umbrella', 'handbag', 'tie', 'suitcase', 'frisbee', | |||
'skis', 'snowboard', 'sports ball', 'kite', 'baseball bat', 'baseball glove', 'skateboard', 'surfboard', | |||
'tennis racket', 'bottle', 'wine glass', 'cup', 'fork', 'knife', 'spoon', 'bowl', 'banana', 'apple', | |||
'sandwich', 'orange', 'broccoli', 'carrot', 'hot dog', 'pizza', 'donut', 'cake', 'chair', 'couch', | |||
'potted plant', 'bed', 'dining table', 'toilet', 'tv', 'laptop', 'mouse', 'remote', 'keyboard', 'cell phone', | |||
'microwave', 'oven', 'toaster', 'sink', 'refrigerator', 'book', 'clock', 'vase', 'scissors', 'teddy bear', | |||
'hair drier', 'toothbrush' ] # class names | |||
names: ['person', 'bicycle', 'car', 'motorcycle', 'airplane', 'bus', 'train', 'truck', 'boat', 'traffic light', | |||
'fire hydrant', 'stop sign', 'parking meter', 'bench', 'bird', 'cat', 'dog', 'horse', 'sheep', 'cow', | |||
'elephant', 'bear', 'zebra', 'giraffe', 'backpack', 'umbrella', 'handbag', 'tie', 'suitcase', 'frisbee', | |||
'skis', 'snowboard', 'sports ball', 'kite', 'baseball bat', 'baseball glove', 'skateboard', 'surfboard', | |||
'tennis racket', 'bottle', 'wine glass', 'cup', 'fork', 'knife', 'spoon', 'bowl', 'banana', 'apple', | |||
'sandwich', 'orange', 'broccoli', 'carrot', 'hot dog', 'pizza', 'donut', 'cake', 'chair', 'couch', | |||
'potted plant', 'bed', 'dining table', 'toilet', 'tv', 'laptop', 'mouse', 'remote', 'keyboard', 'cell phone', | |||
'microwave', 'oven', 'toaster', 'sink', 'refrigerator', 'book', 'clock', 'vase', 'scissors', 'teddy bear', | |||
'hair drier', 'toothbrush'] # class names | |||
# Download script/URL (optional) |
@@ -12,7 +12,7 @@ d='../datasets' # unzip directory | |||
url=https://github.com/ultralytics/yolov5/releases/download/v1.0/ | |||
f='coco2017labels.zip' # or 'coco2017labels-segments.zip', 68 MB | |||
echo 'Downloading' $url$f ' ...' | |||
curl -L $url$f -o $f && unzip -q $f -d $d && rm $f & # download, unzip, remove in background | |||
curl -L $url$f -o $f && unzip -q $f -d $d && rm $f & | |||
# Download/unzip images | |||
d='../datasets/coco/images' # unzip directory | |||
@@ -22,6 +22,6 @@ f2='val2017.zip' # 1G, 5k images | |||
f3='test2017.zip' # 7G, 41k images (optional) | |||
for f in $f1 $f2; do | |||
echo 'Downloading' $url$f '...' | |||
curl -L $url$f -o $f && unzip -q $f -d $d && rm $f & # download, unzip, remove in background | |||
curl -L $url$f -o $f && unzip -q $f -d $d && rm $f & | |||
done | |||
wait # finish background tasks |
@@ -12,6 +12,6 @@ d='../datasets' # unzip directory | |||
url=https://github.com/ultralytics/yolov5/releases/download/v1.0/ | |||
f='coco128.zip' # or 'coco2017labels-segments.zip', 68 MB | |||
echo 'Downloading' $url$f ' ...' | |||
curl -L $url$f -o $f && unzip -q $f -d $d && rm $f & # download, unzip, remove in background | |||
curl -L $url$f -o $f && unzip -q $f -d $d && rm $f & | |||
wait # finish background tasks |
@@ -15,15 +15,15 @@ val: images/autosplit_val.txt # train images (relative to 'path') 10% of 847 tr | |||
# Classes | |||
nc: 60 # number of classes | |||
names: [ 'Fixed-wing Aircraft', 'Small Aircraft', 'Cargo Plane', 'Helicopter', 'Passenger Vehicle', 'Small Car', 'Bus', | |||
'Pickup Truck', 'Utility Truck', 'Truck', 'Cargo Truck', 'Truck w/Box', 'Truck Tractor', 'Trailer', | |||
'Truck w/Flatbed', 'Truck w/Liquid', 'Crane Truck', 'Railway Vehicle', 'Passenger Car', 'Cargo Car', | |||
'Flat Car', 'Tank car', 'Locomotive', 'Maritime Vessel', 'Motorboat', 'Sailboat', 'Tugboat', 'Barge', | |||
'Fishing Vessel', 'Ferry', 'Yacht', 'Container Ship', 'Oil Tanker', 'Engineering Vehicle', 'Tower crane', | |||
'Container Crane', 'Reach Stacker', 'Straddle Carrier', 'Mobile Crane', 'Dump Truck', 'Haul Truck', | |||
'Scraper/Tractor', 'Front loader/Bulldozer', 'Excavator', 'Cement Mixer', 'Ground Grader', 'Hut/Tent', 'Shed', | |||
'Building', 'Aircraft Hangar', 'Damaged Building', 'Facility', 'Construction Site', 'Vehicle Lot', 'Helipad', | |||
'Storage Tank', 'Shipping container lot', 'Shipping Container', 'Pylon', 'Tower' ] # class names | |||
names: ['Fixed-wing Aircraft', 'Small Aircraft', 'Cargo Plane', 'Helicopter', 'Passenger Vehicle', 'Small Car', 'Bus', | |||
'Pickup Truck', 'Utility Truck', 'Truck', 'Cargo Truck', 'Truck w/Box', 'Truck Tractor', 'Trailer', | |||
'Truck w/Flatbed', 'Truck w/Liquid', 'Crane Truck', 'Railway Vehicle', 'Passenger Car', 'Cargo Car', | |||
'Flat Car', 'Tank car', 'Locomotive', 'Maritime Vessel', 'Motorboat', 'Sailboat', 'Tugboat', 'Barge', | |||
'Fishing Vessel', 'Ferry', 'Yacht', 'Container Ship', 'Oil Tanker', 'Engineering Vehicle', 'Tower crane', | |||
'Container Crane', 'Reach Stacker', 'Straddle Carrier', 'Mobile Crane', 'Dump Truck', 'Haul Truck', | |||
'Scraper/Tractor', 'Front loader/Bulldozer', 'Excavator', 'Cement Mixer', 'Ground Grader', 'Hut/Tent', 'Shed', | |||
'Building', 'Aircraft Hangar', 'Damaged Building', 'Facility', 'Construction Site', 'Vehicle Lot', 'Helipad', | |||
'Storage Tank', 'Shipping container lot', 'Shipping Container', 'Pylon', 'Tower'] # class names | |||
# Download script/URL (optional) --------------------------------------------------------------------------------------- |
@@ -4,55 +4,55 @@ | |||
# P5 ------------------------------------------------------------------------------------------------------------------- | |||
# P5-640: | |||
anchors_p5_640: | |||
- [ 10,13, 16,30, 33,23 ] # P3/8 | |||
- [ 30,61, 62,45, 59,119 ] # P4/16 | |||
- [ 116,90, 156,198, 373,326 ] # P5/32 | |||
- [10,13, 16,30, 33,23] # P3/8 | |||
- [30,61, 62,45, 59,119] # P4/16 | |||
- [116,90, 156,198, 373,326] # P5/32 | |||
# P6 ------------------------------------------------------------------------------------------------------------------- | |||
# P6-640: thr=0.25: 0.9964 BPR, 5.54 anchors past thr, n=12, img_size=640, metric_all=0.281/0.716-mean/best, past_thr=0.469-mean: 9,11, 21,19, 17,41, 43,32, 39,70, 86,64, 65,131, 134,130, 120,265, 282,180, 247,354, 512,387 | |||
anchors_p6_640: | |||
- [ 9,11, 21,19, 17,41 ] # P3/8 | |||
- [ 43,32, 39,70, 86,64 ] # P4/16 | |||
- [ 65,131, 134,130, 120,265 ] # P5/32 | |||
- [ 282,180, 247,354, 512,387 ] # P6/64 | |||
- [9,11, 21,19, 17,41] # P3/8 | |||
- [43,32, 39,70, 86,64] # P4/16 | |||
- [65,131, 134,130, 120,265] # P5/32 | |||
- [282,180, 247,354, 512,387] # P6/64 | |||
# P6-1280: thr=0.25: 0.9950 BPR, 5.55 anchors past thr, n=12, img_size=1280, metric_all=0.281/0.714-mean/best, past_thr=0.468-mean: 19,27, 44,40, 38,94, 96,68, 86,152, 180,137, 140,301, 303,264, 238,542, 436,615, 739,380, 925,792 | |||
anchors_p6_1280: | |||
- [ 19,27, 44,40, 38,94 ] # P3/8 | |||
- [ 96,68, 86,152, 180,137 ] # P4/16 | |||
- [ 140,301, 303,264, 238,542 ] # P5/32 | |||
- [ 436,615, 739,380, 925,792 ] # P6/64 | |||
- [19,27, 44,40, 38,94] # P3/8 | |||
- [96,68, 86,152, 180,137] # P4/16 | |||
- [140,301, 303,264, 238,542] # P5/32 | |||
- [436,615, 739,380, 925,792] # P6/64 | |||
# P6-1920: thr=0.25: 0.9950 BPR, 5.55 anchors past thr, n=12, img_size=1920, metric_all=0.281/0.714-mean/best, past_thr=0.468-mean: 28,41, 67,59, 57,141, 144,103, 129,227, 270,205, 209,452, 455,396, 358,812, 653,922, 1109,570, 1387,1187 | |||
anchors_p6_1920: | |||
- [ 28,41, 67,59, 57,141 ] # P3/8 | |||
- [ 144,103, 129,227, 270,205 ] # P4/16 | |||
- [ 209,452, 455,396, 358,812 ] # P5/32 | |||
- [ 653,922, 1109,570, 1387,1187 ] # P6/64 | |||
- [28,41, 67,59, 57,141] # P3/8 | |||
- [144,103, 129,227, 270,205] # P4/16 | |||
- [209,452, 455,396, 358,812] # P5/32 | |||
- [653,922, 1109,570, 1387,1187] # P6/64 | |||
# P7 ------------------------------------------------------------------------------------------------------------------- | |||
# P7-640: thr=0.25: 0.9962 BPR, 6.76 anchors past thr, n=15, img_size=640, metric_all=0.275/0.733-mean/best, past_thr=0.466-mean: 11,11, 13,30, 29,20, 30,46, 61,38, 39,92, 78,80, 146,66, 79,163, 149,150, 321,143, 157,303, 257,402, 359,290, 524,372 | |||
anchors_p7_640: | |||
- [ 11,11, 13,30, 29,20 ] # P3/8 | |||
- [ 30,46, 61,38, 39,92 ] # P4/16 | |||
- [ 78,80, 146,66, 79,163 ] # P5/32 | |||
- [ 149,150, 321,143, 157,303 ] # P6/64 | |||
- [ 257,402, 359,290, 524,372 ] # P7/128 | |||
- [11,11, 13,30, 29,20] # P3/8 | |||
- [30,46, 61,38, 39,92] # P4/16 | |||
- [78,80, 146,66, 79,163] # P5/32 | |||
- [149,150, 321,143, 157,303] # P6/64 | |||
- [257,402, 359,290, 524,372] # P7/128 | |||
# P7-1280: thr=0.25: 0.9968 BPR, 6.71 anchors past thr, n=15, img_size=1280, metric_all=0.273/0.732-mean/best, past_thr=0.463-mean: 19,22, 54,36, 32,77, 70,83, 138,71, 75,173, 165,159, 148,334, 375,151, 334,317, 251,626, 499,474, 750,326, 534,814, 1079,818 | |||
anchors_p7_1280: | |||
- [ 19,22, 54,36, 32,77 ] # P3/8 | |||
- [ 70,83, 138,71, 75,173 ] # P4/16 | |||
- [ 165,159, 148,334, 375,151 ] # P5/32 | |||
- [ 334,317, 251,626, 499,474 ] # P6/64 | |||
- [ 750,326, 534,814, 1079,818 ] # P7/128 | |||
- [19,22, 54,36, 32,77] # P3/8 | |||
- [70,83, 138,71, 75,173] # P4/16 | |||
- [165,159, 148,334, 375,151] # P5/32 | |||
- [334,317, 251,626, 499,474] # P6/64 | |||
- [750,326, 534,814, 1079,818] # P7/128 | |||
# P7-1920: thr=0.25: 0.9968 BPR, 6.71 anchors past thr, n=15, img_size=1920, metric_all=0.273/0.732-mean/best, past_thr=0.463-mean: 29,34, 81,55, 47,115, 105,124, 207,107, 113,259, 247,238, 222,500, 563,227, 501,476, 376,939, 749,711, 1126,489, 801,1222, 1618,1227 | |||
anchors_p7_1920: | |||
- [ 29,34, 81,55, 47,115 ] # P3/8 | |||
- [ 105,124, 207,107, 113,259 ] # P4/16 | |||
- [ 247,238, 222,500, 563,227 ] # P5/32 | |||
- [ 501,476, 376,939, 749,711 ] # P6/64 | |||
- [ 1126,489, 801,1222, 1618,1227 ] # P7/128 | |||
- [29,34, 81,55, 47,115] # P3/8 | |||
- [105,124, 207,107, 113,259] # P4/16 | |||
- [247,238, 222,500, 563,227] # P5/32 | |||
- [501,476, 376,939, 749,711] # P6/64 | |||
- [1126,489, 801,1222, 1618,1227] # P7/128 |
@@ -3,47 +3,47 @@ nc: 80 # number of classes | |||
depth_multiple: 1.0 # model depth multiple | |||
width_multiple: 1.0 # layer channel multiple | |||
anchors: | |||
- [ 10,13, 16,30, 33,23 ] # P3/8 | |||
- [ 30,61, 62,45, 59,119 ] # P4/16 | |||
- [ 116,90, 156,198, 373,326 ] # P5/32 | |||
- [10,13, 16,30, 33,23] # P3/8 | |||
- [30,61, 62,45, 59,119] # P4/16 | |||
- [116,90, 156,198, 373,326] # P5/32 | |||
# darknet53 backbone | |||
backbone: | |||
# [from, number, module, args] | |||
[ [ -1, 1, Conv, [ 32, 3, 1 ] ], # 0 | |||
[ -1, 1, Conv, [ 64, 3, 2 ] ], # 1-P1/2 | |||
[ -1, 1, Bottleneck, [ 64 ] ], | |||
[ -1, 1, Conv, [ 128, 3, 2 ] ], # 3-P2/4 | |||
[ -1, 2, Bottleneck, [ 128 ] ], | |||
[ -1, 1, Conv, [ 256, 3, 2 ] ], # 5-P3/8 | |||
[ -1, 8, Bottleneck, [ 256 ] ], | |||
[ -1, 1, Conv, [ 512, 3, 2 ] ], # 7-P4/16 | |||
[ -1, 8, Bottleneck, [ 512 ] ], | |||
[ -1, 1, Conv, [ 1024, 3, 2 ] ], # 9-P5/32 | |||
[ -1, 4, Bottleneck, [ 1024 ] ], # 10 | |||
[[-1, 1, Conv, [32, 3, 1]], # 0 | |||
[-1, 1, Conv, [64, 3, 2]], # 1-P1/2 | |||
[-1, 1, Bottleneck, [64]], | |||
[-1, 1, Conv, [128, 3, 2]], # 3-P2/4 | |||
[-1, 2, Bottleneck, [128]], | |||
[-1, 1, Conv, [256, 3, 2]], # 5-P3/8 | |||
[-1, 8, Bottleneck, [256]], | |||
[-1, 1, Conv, [512, 3, 2]], # 7-P4/16 | |||
[-1, 8, Bottleneck, [512]], | |||
[-1, 1, Conv, [1024, 3, 2]], # 9-P5/32 | |||
[-1, 4, Bottleneck, [1024]], # 10 | |||
] | |||
# YOLOv3-SPP head | |||
head: | |||
[ [ -1, 1, Bottleneck, [ 1024, False ] ], | |||
[ -1, 1, SPP, [ 512, [ 5, 9, 13 ] ] ], | |||
[ -1, 1, Conv, [ 1024, 3, 1 ] ], | |||
[ -1, 1, Conv, [ 512, 1, 1 ] ], | |||
[ -1, 1, Conv, [ 1024, 3, 1 ] ], # 15 (P5/32-large) | |||
[[-1, 1, Bottleneck, [1024, False]], | |||
[-1, 1, SPP, [512, [5, 9, 13]]], | |||
[-1, 1, Conv, [1024, 3, 1]], | |||
[-1, 1, Conv, [512, 1, 1]], | |||
[-1, 1, Conv, [1024, 3, 1]], # 15 (P5/32-large) | |||
[ -2, 1, Conv, [ 256, 1, 1 ] ], | |||
[ -1, 1, nn.Upsample, [ None, 2, 'nearest' ] ], | |||
[ [ -1, 8 ], 1, Concat, [ 1 ] ], # cat backbone P4 | |||
[ -1, 1, Bottleneck, [ 512, False ] ], | |||
[ -1, 1, Bottleneck, [ 512, False ] ], | |||
[ -1, 1, Conv, [ 256, 1, 1 ] ], | |||
[ -1, 1, Conv, [ 512, 3, 1 ] ], # 22 (P4/16-medium) | |||
[-2, 1, Conv, [256, 1, 1]], | |||
[-1, 1, nn.Upsample, [None, 2, 'nearest']], | |||
[[-1, 8], 1, Concat, [1]], # cat backbone P4 | |||
[-1, 1, Bottleneck, [512, False]], | |||
[-1, 1, Bottleneck, [512, False]], | |||
[-1, 1, Conv, [256, 1, 1]], | |||
[-1, 1, Conv, [512, 3, 1]], # 22 (P4/16-medium) | |||
[ -2, 1, Conv, [ 128, 1, 1 ] ], | |||
[ -1, 1, nn.Upsample, [ None, 2, 'nearest' ] ], | |||
[ [ -1, 6 ], 1, Concat, [ 1 ] ], # cat backbone P3 | |||
[ -1, 1, Bottleneck, [ 256, False ] ], | |||
[ -1, 2, Bottleneck, [ 256, False ] ], # 27 (P3/8-small) | |||
[-2, 1, Conv, [128, 1, 1]], | |||
[-1, 1, nn.Upsample, [None, 2, 'nearest']], | |||
[[-1, 6], 1, Concat, [1]], # cat backbone P3 | |||
[-1, 1, Bottleneck, [256, False]], | |||
[-1, 2, Bottleneck, [256, False]], # 27 (P3/8-small) | |||
[ [ 27, 22, 15 ], 1, Detect, [ nc, anchors ] ], # Detect(P3, P4, P5) | |||
[[27, 22, 15], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5) | |||
] |
@@ -3,37 +3,37 @@ nc: 80 # number of classes | |||
depth_multiple: 1.0 # model depth multiple | |||
width_multiple: 1.0 # layer channel multiple | |||
anchors: | |||
- [ 10,14, 23,27, 37,58 ] # P4/16 | |||
- [ 81,82, 135,169, 344,319 ] # P5/32 | |||
- [10,14, 23,27, 37,58] # P4/16 | |||
- [81,82, 135,169, 344,319] # P5/32 | |||
# YOLOv3-tiny backbone | |||
backbone: | |||
# [from, number, module, args] | |||
[ [ -1, 1, Conv, [ 16, 3, 1 ] ], # 0 | |||
[ -1, 1, nn.MaxPool2d, [ 2, 2, 0 ] ], # 1-P1/2 | |||
[ -1, 1, Conv, [ 32, 3, 1 ] ], | |||
[ -1, 1, nn.MaxPool2d, [ 2, 2, 0 ] ], # 3-P2/4 | |||
[ -1, 1, Conv, [ 64, 3, 1 ] ], | |||
[ -1, 1, nn.MaxPool2d, [ 2, 2, 0 ] ], # 5-P3/8 | |||
[ -1, 1, Conv, [ 128, 3, 1 ] ], | |||
[ -1, 1, nn.MaxPool2d, [ 2, 2, 0 ] ], # 7-P4/16 | |||
[ -1, 1, Conv, [ 256, 3, 1 ] ], | |||
[ -1, 1, nn.MaxPool2d, [ 2, 2, 0 ] ], # 9-P5/32 | |||
[ -1, 1, Conv, [ 512, 3, 1 ] ], | |||
[ -1, 1, nn.ZeroPad2d, [ [ 0, 1, 0, 1 ] ] ], # 11 | |||
[ -1, 1, nn.MaxPool2d, [ 2, 1, 0 ] ], # 12 | |||
[[-1, 1, Conv, [16, 3, 1]], # 0 | |||
[-1, 1, nn.MaxPool2d, [2, 2, 0]], # 1-P1/2 | |||
[-1, 1, Conv, [32, 3, 1]], | |||
[-1, 1, nn.MaxPool2d, [2, 2, 0]], # 3-P2/4 | |||
[-1, 1, Conv, [64, 3, 1]], | |||
[-1, 1, nn.MaxPool2d, [2, 2, 0]], # 5-P3/8 | |||
[-1, 1, Conv, [128, 3, 1]], | |||
[-1, 1, nn.MaxPool2d, [2, 2, 0]], # 7-P4/16 | |||
[-1, 1, Conv, [256, 3, 1]], | |||
[-1, 1, nn.MaxPool2d, [2, 2, 0]], # 9-P5/32 | |||
[-1, 1, Conv, [512, 3, 1]], | |||
[-1, 1, nn.ZeroPad2d, [[0, 1, 0, 1]]], # 11 | |||
[-1, 1, nn.MaxPool2d, [2, 1, 0]], # 12 | |||
] | |||
# YOLOv3-tiny head | |||
head: | |||
[ [ -1, 1, Conv, [ 1024, 3, 1 ] ], | |||
[ -1, 1, Conv, [ 256, 1, 1 ] ], | |||
[ -1, 1, Conv, [ 512, 3, 1 ] ], # 15 (P5/32-large) | |||
[[-1, 1, Conv, [1024, 3, 1]], | |||
[-1, 1, Conv, [256, 1, 1]], | |||
[-1, 1, Conv, [512, 3, 1]], # 15 (P5/32-large) | |||
[ -2, 1, Conv, [ 128, 1, 1 ] ], | |||
[ -1, 1, nn.Upsample, [ None, 2, 'nearest' ] ], | |||
[ [ -1, 8 ], 1, Concat, [ 1 ] ], # cat backbone P4 | |||
[ -1, 1, Conv, [ 256, 3, 1 ] ], # 19 (P4/16-medium) | |||
[-2, 1, Conv, [128, 1, 1]], | |||
[-1, 1, nn.Upsample, [None, 2, 'nearest']], | |||
[[-1, 8], 1, Concat, [1]], # cat backbone P4 | |||
[-1, 1, Conv, [256, 3, 1]], # 19 (P4/16-medium) | |||
[ [ 19, 15 ], 1, Detect, [ nc, anchors ] ], # Detect(P4, P5) | |||
[[19, 15], 1, Detect, [nc, anchors]], # Detect(P4, P5) | |||
] |
@@ -3,47 +3,47 @@ nc: 80 # number of classes | |||
depth_multiple: 1.0 # model depth multiple | |||
width_multiple: 1.0 # layer channel multiple | |||
anchors: | |||
- [ 10,13, 16,30, 33,23 ] # P3/8 | |||
- [ 30,61, 62,45, 59,119 ] # P4/16 | |||
- [ 116,90, 156,198, 373,326 ] # P5/32 | |||
- [10,13, 16,30, 33,23] # P3/8 | |||
- [30,61, 62,45, 59,119] # P4/16 | |||
- [116,90, 156,198, 373,326] # P5/32 | |||
# darknet53 backbone | |||
backbone: | |||
# [from, number, module, args] | |||
[ [ -1, 1, Conv, [ 32, 3, 1 ] ], # 0 | |||
[ -1, 1, Conv, [ 64, 3, 2 ] ], # 1-P1/2 | |||
[ -1, 1, Bottleneck, [ 64 ] ], | |||
[ -1, 1, Conv, [ 128, 3, 2 ] ], # 3-P2/4 | |||
[ -1, 2, Bottleneck, [ 128 ] ], | |||
[ -1, 1, Conv, [ 256, 3, 2 ] ], # 5-P3/8 | |||
[ -1, 8, Bottleneck, [ 256 ] ], | |||
[ -1, 1, Conv, [ 512, 3, 2 ] ], # 7-P4/16 | |||
[ -1, 8, Bottleneck, [ 512 ] ], | |||
[ -1, 1, Conv, [ 1024, 3, 2 ] ], # 9-P5/32 | |||
[ -1, 4, Bottleneck, [ 1024 ] ], # 10 | |||
[[-1, 1, Conv, [32, 3, 1]], # 0 | |||
[-1, 1, Conv, [64, 3, 2]], # 1-P1/2 | |||
[-1, 1, Bottleneck, [64]], | |||
[-1, 1, Conv, [128, 3, 2]], # 3-P2/4 | |||
[-1, 2, Bottleneck, [128]], | |||
[-1, 1, Conv, [256, 3, 2]], # 5-P3/8 | |||
[-1, 8, Bottleneck, [256]], | |||
[-1, 1, Conv, [512, 3, 2]], # 7-P4/16 | |||
[-1, 8, Bottleneck, [512]], | |||
[-1, 1, Conv, [1024, 3, 2]], # 9-P5/32 | |||
[-1, 4, Bottleneck, [1024]], # 10 | |||
] | |||
# YOLOv3 head | |||
head: | |||
[ [ -1, 1, Bottleneck, [ 1024, False ] ], | |||
[ -1, 1, Conv, [ 512, [ 1, 1 ] ] ], | |||
[ -1, 1, Conv, [ 1024, 3, 1 ] ], | |||
[ -1, 1, Conv, [ 512, 1, 1 ] ], | |||
[ -1, 1, Conv, [ 1024, 3, 1 ] ], # 15 (P5/32-large) | |||
[[-1, 1, Bottleneck, [1024, False]], | |||
[-1, 1, Conv, [512, [1, 1]]], | |||
[-1, 1, Conv, [1024, 3, 1]], | |||
[-1, 1, Conv, [512, 1, 1]], | |||
[-1, 1, Conv, [1024, 3, 1]], # 15 (P5/32-large) | |||
[ -2, 1, Conv, [ 256, 1, 1 ] ], | |||
[ -1, 1, nn.Upsample, [ None, 2, 'nearest' ] ], | |||
[ [ -1, 8 ], 1, Concat, [ 1 ] ], # cat backbone P4 | |||
[ -1, 1, Bottleneck, [ 512, False ] ], | |||
[ -1, 1, Bottleneck, [ 512, False ] ], | |||
[ -1, 1, Conv, [ 256, 1, 1 ] ], | |||
[ -1, 1, Conv, [ 512, 3, 1 ] ], # 22 (P4/16-medium) | |||
[-2, 1, Conv, [256, 1, 1]], | |||
[-1, 1, nn.Upsample, [None, 2, 'nearest']], | |||
[[-1, 8], 1, Concat, [1]], # cat backbone P4 | |||
[-1, 1, Bottleneck, [512, False]], | |||
[-1, 1, Bottleneck, [512, False]], | |||
[-1, 1, Conv, [256, 1, 1]], | |||
[-1, 1, Conv, [512, 3, 1]], # 22 (P4/16-medium) | |||
[ -2, 1, Conv, [ 128, 1, 1 ] ], | |||
[ -1, 1, nn.Upsample, [ None, 2, 'nearest' ] ], | |||
[ [ -1, 6 ], 1, Concat, [ 1 ] ], # cat backbone P3 | |||
[ -1, 1, Bottleneck, [ 256, False ] ], | |||
[ -1, 2, Bottleneck, [ 256, False ] ], # 27 (P3/8-small) | |||
[-2, 1, Conv, [128, 1, 1]], | |||
[-1, 1, nn.Upsample, [None, 2, 'nearest']], | |||
[[-1, 6], 1, Concat, [1]], # cat backbone P3 | |||
[-1, 1, Bottleneck, [256, False]], | |||
[-1, 2, Bottleneck, [256, False]], # 27 (P3/8-small) | |||
[ [ 27, 22, 15 ], 1, Detect, [ nc, anchors ] ], # Detect(P3, P4, P5) | |||
[[27, 22, 15], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5) | |||
] |
@@ -3,38 +3,38 @@ nc: 80 # number of classes | |||
depth_multiple: 1.0 # model depth multiple | |||
width_multiple: 1.0 # layer channel multiple | |||
anchors: | |||
- [ 10,13, 16,30, 33,23 ] # P3/8 | |||
- [ 30,61, 62,45, 59,119 ] # P4/16 | |||
- [ 116,90, 156,198, 373,326 ] # P5/32 | |||
- [10,13, 16,30, 33,23] # P3/8 | |||
- [30,61, 62,45, 59,119] # P4/16 | |||
- [116,90, 156,198, 373,326] # P5/32 | |||
# YOLOv5 backbone | |||
backbone: | |||
# [from, number, module, args] | |||
[ [ -1, 1, Focus, [ 64, 3 ] ], # 0-P1/2 | |||
[ -1, 1, Conv, [ 128, 3, 2 ] ], # 1-P2/4 | |||
[ -1, 3, Bottleneck, [ 128 ] ], | |||
[ -1, 1, Conv, [ 256, 3, 2 ] ], # 3-P3/8 | |||
[ -1, 9, BottleneckCSP, [ 256 ] ], | |||
[ -1, 1, Conv, [ 512, 3, 2 ] ], # 5-P4/16 | |||
[ -1, 9, BottleneckCSP, [ 512 ] ], | |||
[ -1, 1, Conv, [ 1024, 3, 2 ] ], # 7-P5/32 | |||
[ -1, 1, SPP, [ 1024, [ 5, 9, 13 ] ] ], | |||
[ -1, 6, BottleneckCSP, [ 1024 ] ], # 9 | |||
[[-1, 1, Focus, [64, 3]], # 0-P1/2 | |||
[-1, 1, Conv, [128, 3, 2]], # 1-P2/4 | |||
[-1, 3, Bottleneck, [128]], | |||
[-1, 1, Conv, [256, 3, 2]], # 3-P3/8 | |||
[-1, 9, BottleneckCSP, [256]], | |||
[-1, 1, Conv, [512, 3, 2]], # 5-P4/16 | |||
[-1, 9, BottleneckCSP, [512]], | |||
[-1, 1, Conv, [1024, 3, 2]], # 7-P5/32 | |||
[-1, 1, SPP, [1024, [5, 9, 13]]], | |||
[-1, 6, BottleneckCSP, [1024]], # 9 | |||
] | |||
# YOLOv5 FPN head | |||
head: | |||
[ [ -1, 3, BottleneckCSP, [ 1024, False ] ], # 10 (P5/32-large) | |||
[[-1, 3, BottleneckCSP, [1024, False]], # 10 (P5/32-large) | |||
[ -1, 1, nn.Upsample, [ None, 2, 'nearest' ] ], | |||
[ [ -1, 6 ], 1, Concat, [ 1 ] ], # cat backbone P4 | |||
[ -1, 1, Conv, [ 512, 1, 1 ] ], | |||
[ -1, 3, BottleneckCSP, [ 512, False ] ], # 14 (P4/16-medium) | |||
[-1, 1, nn.Upsample, [None, 2, 'nearest']], | |||
[[-1, 6], 1, Concat, [1]], # cat backbone P4 | |||
[-1, 1, Conv, [512, 1, 1]], | |||
[-1, 3, BottleneckCSP, [512, False]], # 14 (P4/16-medium) | |||
[ -1, 1, nn.Upsample, [ None, 2, 'nearest' ] ], | |||
[ [ -1, 4 ], 1, Concat, [ 1 ] ], # cat backbone P3 | |||
[ -1, 1, Conv, [ 256, 1, 1 ] ], | |||
[ -1, 3, BottleneckCSP, [ 256, False ] ], # 18 (P3/8-small) | |||
[-1, 1, nn.Upsample, [None, 2, 'nearest']], | |||
[[-1, 4], 1, Concat, [1]], # cat backbone P3 | |||
[-1, 1, Conv, [256, 1, 1]], | |||
[-1, 3, BottleneckCSP, [256, False]], # 18 (P3/8-small) | |||
[ [ 18, 14, 10 ], 1, Detect, [ nc, anchors ] ], # Detect(P3, P4, P5) | |||
[[18, 14, 10], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5) | |||
] |
@@ -7,46 +7,46 @@ anchors: 3 | |||
# YOLOv5 backbone | |||
backbone: | |||
# [from, number, module, args] | |||
[ [ -1, 1, Focus, [ 64, 3 ] ], # 0-P1/2 | |||
[ -1, 1, Conv, [ 128, 3, 2 ] ], # 1-P2/4 | |||
[ -1, 3, C3, [ 128 ] ], | |||
[ -1, 1, Conv, [ 256, 3, 2 ] ], # 3-P3/8 | |||
[ -1, 9, C3, [ 256 ] ], | |||
[ -1, 1, Conv, [ 512, 3, 2 ] ], # 5-P4/16 | |||
[ -1, 9, C3, [ 512 ] ], | |||
[ -1, 1, Conv, [ 1024, 3, 2 ] ], # 7-P5/32 | |||
[ -1, 1, SPP, [ 1024, [ 5, 9, 13 ] ] ], | |||
[ -1, 3, C3, [ 1024, False ] ], # 9 | |||
[[-1, 1, Focus, [64, 3]], # 0-P1/2 | |||
[-1, 1, Conv, [128, 3, 2]], # 1-P2/4 | |||
[-1, 3, C3, [128]], | |||
[-1, 1, Conv, [256, 3, 2]], # 3-P3/8 | |||
[-1, 9, C3, [256]], | |||
[-1, 1, Conv, [512, 3, 2]], # 5-P4/16 | |||
[-1, 9, C3, [512]], | |||
[-1, 1, Conv, [1024, 3, 2]], # 7-P5/32 | |||
[-1, 1, SPP, [1024, [5, 9, 13]]], | |||
[-1, 3, C3, [1024, False]], # 9 | |||
] | |||
# YOLOv5 head | |||
head: | |||
[ [ -1, 1, Conv, [ 512, 1, 1 ] ], | |||
[ -1, 1, nn.Upsample, [ None, 2, 'nearest' ] ], | |||
[ [ -1, 6 ], 1, Concat, [ 1 ] ], # cat backbone P4 | |||
[ -1, 3, C3, [ 512, False ] ], # 13 | |||
[ -1, 1, Conv, [ 256, 1, 1 ] ], | |||
[ -1, 1, nn.Upsample, [ None, 2, 'nearest' ] ], | |||
[ [ -1, 4 ], 1, Concat, [ 1 ] ], # cat backbone P3 | |||
[ -1, 3, C3, [ 256, False ] ], # 17 (P3/8-small) | |||
[ -1, 1, Conv, [ 128, 1, 1 ] ], | |||
[ -1, 1, nn.Upsample, [ None, 2, 'nearest' ] ], | |||
[ [ -1, 2 ], 1, Concat, [ 1 ] ], # cat backbone P2 | |||
[ -1, 1, C3, [ 128, False ] ], # 21 (P2/4-xsmall) | |||
[ -1, 1, Conv, [ 128, 3, 2 ] ], | |||
[ [ -1, 18 ], 1, Concat, [ 1 ] ], # cat head P3 | |||
[ -1, 3, C3, [ 256, False ] ], # 24 (P3/8-small) | |||
[ -1, 1, Conv, [ 256, 3, 2 ] ], | |||
[ [ -1, 14 ], 1, Concat, [ 1 ] ], # cat head P4 | |||
[ -1, 3, C3, [ 512, False ] ], # 27 (P4/16-medium) | |||
[ -1, 1, Conv, [ 512, 3, 2 ] ], | |||
[ [ -1, 10 ], 1, Concat, [ 1 ] ], # cat head P5 | |||
[ -1, 3, C3, [ 1024, False ] ], # 30 (P5/32-large) | |||
[ [ 24, 27, 30 ], 1, Detect, [ nc, anchors ] ], # Detect(P3, P4, P5) | |||
[[-1, 1, Conv, [512, 1, 1]], | |||
[-1, 1, nn.Upsample, [None, 2, 'nearest']], | |||
[[-1, 6], 1, Concat, [1]], # cat backbone P4 | |||
[-1, 3, C3, [512, False]], # 13 | |||
[-1, 1, Conv, [256, 1, 1]], | |||
[-1, 1, nn.Upsample, [None, 2, 'nearest']], | |||
[[-1, 4], 1, Concat, [1]], # cat backbone P3 | |||
[-1, 3, C3, [256, False]], # 17 (P3/8-small) | |||
[-1, 1, Conv, [128, 1, 1]], | |||
[-1, 1, nn.Upsample, [None, 2, 'nearest']], | |||
[[-1, 2], 1, Concat, [1]], # cat backbone P2 | |||
[-1, 1, C3, [128, False]], # 21 (P2/4-xsmall) | |||
[-1, 1, Conv, [128, 3, 2]], | |||
[[-1, 18], 1, Concat, [1]], # cat head P3 | |||
[-1, 3, C3, [256, False]], # 24 (P3/8-small) | |||
[-1, 1, Conv, [256, 3, 2]], | |||
[[-1, 14], 1, Concat, [1]], # cat head P4 | |||
[-1, 3, C3, [512, False]], # 27 (P4/16-medium) | |||
[-1, 1, Conv, [512, 3, 2]], | |||
[[-1, 10], 1, Concat, [1]], # cat head P5 | |||
[-1, 3, C3, [1024, False]], # 30 (P5/32-large) | |||
[[24, 27, 30], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5) | |||
] |
@@ -7,48 +7,48 @@ anchors: 3 | |||
# YOLOv5 backbone | |||
backbone: | |||
# [from, number, module, args] | |||
[ [ -1, 1, Focus, [ 64, 3 ] ], # 0-P1/2 | |||
[ -1, 1, Conv, [ 128, 3, 2 ] ], # 1-P2/4 | |||
[ -1, 3, C3, [ 128 ] ], | |||
[ -1, 1, Conv, [ 256, 3, 2 ] ], # 3-P3/8 | |||
[ -1, 9, C3, [ 256 ] ], | |||
[ -1, 1, Conv, [ 512, 3, 2 ] ], # 5-P4/16 | |||
[ -1, 9, C3, [ 512 ] ], | |||
[ -1, 1, Conv, [ 768, 3, 2 ] ], # 7-P5/32 | |||
[ -1, 3, C3, [ 768 ] ], | |||
[ -1, 1, Conv, [ 1024, 3, 2 ] ], # 9-P6/64 | |||
[ -1, 1, SPP, [ 1024, [ 3, 5, 7 ] ] ], | |||
[ -1, 3, C3, [ 1024, False ] ], # 11 | |||
[[-1, 1, Focus, [64, 3]], # 0-P1/2 | |||
[-1, 1, Conv, [128, 3, 2]], # 1-P2/4 | |||
[-1, 3, C3, [128]], | |||
[-1, 1, Conv, [256, 3, 2]], # 3-P3/8 | |||
[-1, 9, C3, [256]], | |||
[-1, 1, Conv, [512, 3, 2]], # 5-P4/16 | |||
[-1, 9, C3, [512]], | |||
[-1, 1, Conv, [768, 3, 2]], # 7-P5/32 | |||
[-1, 3, C3, [768]], | |||
[-1, 1, Conv, [1024, 3, 2]], # 9-P6/64 | |||
[-1, 1, SPP, [1024, [3, 5, 7]]], | |||
[-1, 3, C3, [1024, False]], # 11 | |||
] | |||
# YOLOv5 head | |||
head: | |||
[ [ -1, 1, Conv, [ 768, 1, 1 ] ], | |||
[ -1, 1, nn.Upsample, [ None, 2, 'nearest' ] ], | |||
[ [ -1, 8 ], 1, Concat, [ 1 ] ], # cat backbone P5 | |||
[ -1, 3, C3, [ 768, False ] ], # 15 | |||
[ -1, 1, Conv, [ 512, 1, 1 ] ], | |||
[ -1, 1, nn.Upsample, [ None, 2, 'nearest' ] ], | |||
[ [ -1, 6 ], 1, Concat, [ 1 ] ], # cat backbone P4 | |||
[ -1, 3, C3, [ 512, False ] ], # 19 | |||
[ -1, 1, Conv, [ 256, 1, 1 ] ], | |||
[ -1, 1, nn.Upsample, [ None, 2, 'nearest' ] ], | |||
[ [ -1, 4 ], 1, Concat, [ 1 ] ], # cat backbone P3 | |||
[ -1, 3, C3, [ 256, False ] ], # 23 (P3/8-small) | |||
[ -1, 1, Conv, [ 256, 3, 2 ] ], | |||
[ [ -1, 20 ], 1, Concat, [ 1 ] ], # cat head P4 | |||
[ -1, 3, C3, [ 512, False ] ], # 26 (P4/16-medium) | |||
[ -1, 1, Conv, [ 512, 3, 2 ] ], | |||
[ [ -1, 16 ], 1, Concat, [ 1 ] ], # cat head P5 | |||
[ -1, 3, C3, [ 768, False ] ], # 29 (P5/32-large) | |||
[ -1, 1, Conv, [ 768, 3, 2 ] ], | |||
[ [ -1, 12 ], 1, Concat, [ 1 ] ], # cat head P6 | |||
[ -1, 3, C3, [ 1024, False ] ], # 32 (P5/64-xlarge) | |||
[ [ 23, 26, 29, 32 ], 1, Detect, [ nc, anchors ] ], # Detect(P3, P4, P5, P6) | |||
[[-1, 1, Conv, [768, 1, 1]], | |||
[-1, 1, nn.Upsample, [None, 2, 'nearest']], | |||
[[-1, 8], 1, Concat, [1]], # cat backbone P5 | |||
[-1, 3, C3, [768, False]], # 15 | |||
[-1, 1, Conv, [512, 1, 1]], | |||
[-1, 1, nn.Upsample, [None, 2, 'nearest']], | |||
[[-1, 6], 1, Concat, [1]], # cat backbone P4 | |||
[-1, 3, C3, [512, False]], # 19 | |||
[-1, 1, Conv, [256, 1, 1]], | |||
[-1, 1, nn.Upsample, [None, 2, 'nearest']], | |||
[[-1, 4], 1, Concat, [1]], # cat backbone P3 | |||
[-1, 3, C3, [256, False]], # 23 (P3/8-small) | |||
[-1, 1, Conv, [256, 3, 2]], | |||
[[-1, 20], 1, Concat, [1]], # cat head P4 | |||
[-1, 3, C3, [512, False]], # 26 (P4/16-medium) | |||
[-1, 1, Conv, [512, 3, 2]], | |||
[[-1, 16], 1, Concat, [1]], # cat head P5 | |||
[-1, 3, C3, [768, False]], # 29 (P5/32-large) | |||
[-1, 1, Conv, [768, 3, 2]], | |||
[[-1, 12], 1, Concat, [1]], # cat head P6 | |||
[-1, 3, C3, [1024, False]], # 32 (P5/64-xlarge) | |||
[[23, 26, 29, 32], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5, P6) | |||
] |
@@ -7,59 +7,59 @@ anchors: 3 | |||
# YOLOv5 backbone | |||
backbone: | |||
# [from, number, module, args] | |||
[ [ -1, 1, Focus, [ 64, 3 ] ], # 0-P1/2 | |||
[ -1, 1, Conv, [ 128, 3, 2 ] ], # 1-P2/4 | |||
[ -1, 3, C3, [ 128 ] ], | |||
[ -1, 1, Conv, [ 256, 3, 2 ] ], # 3-P3/8 | |||
[ -1, 9, C3, [ 256 ] ], | |||
[ -1, 1, Conv, [ 512, 3, 2 ] ], # 5-P4/16 | |||
[ -1, 9, C3, [ 512 ] ], | |||
[ -1, 1, Conv, [ 768, 3, 2 ] ], # 7-P5/32 | |||
[ -1, 3, C3, [ 768 ] ], | |||
[ -1, 1, Conv, [ 1024, 3, 2 ] ], # 9-P6/64 | |||
[ -1, 3, C3, [ 1024 ] ], | |||
[ -1, 1, Conv, [ 1280, 3, 2 ] ], # 11-P7/128 | |||
[ -1, 1, SPP, [ 1280, [ 3, 5 ] ] ], | |||
[ -1, 3, C3, [ 1280, False ] ], # 13 | |||
[[-1, 1, Focus, [64, 3]], # 0-P1/2 | |||
[-1, 1, Conv, [128, 3, 2]], # 1-P2/4 | |||
[-1, 3, C3, [128]], | |||
[-1, 1, Conv, [256, 3, 2]], # 3-P3/8 | |||
[-1, 9, C3, [256]], | |||
[-1, 1, Conv, [512, 3, 2]], # 5-P4/16 | |||
[-1, 9, C3, [512]], | |||
[-1, 1, Conv, [768, 3, 2]], # 7-P5/32 | |||
[-1, 3, C3, [768]], | |||
[-1, 1, Conv, [1024, 3, 2]], # 9-P6/64 | |||
[-1, 3, C3, [1024]], | |||
[-1, 1, Conv, [1280, 3, 2]], # 11-P7/128 | |||
[-1, 1, SPP, [1280, [3, 5]]], | |||
[-1, 3, C3, [1280, False]], # 13 | |||
] | |||
# YOLOv5 head | |||
head: | |||
[ [ -1, 1, Conv, [ 1024, 1, 1 ] ], | |||
[ -1, 1, nn.Upsample, [ None, 2, 'nearest' ] ], | |||
[ [ -1, 10 ], 1, Concat, [ 1 ] ], # cat backbone P6 | |||
[ -1, 3, C3, [ 1024, False ] ], # 17 | |||
[[-1, 1, Conv, [1024, 1, 1]], | |||
[-1, 1, nn.Upsample, [None, 2, 'nearest']], | |||
[[-1, 10], 1, Concat, [1]], # cat backbone P6 | |||
[-1, 3, C3, [1024, False]], # 17 | |||
[ -1, 1, Conv, [ 768, 1, 1 ] ], | |||
[ -1, 1, nn.Upsample, [ None, 2, 'nearest' ] ], | |||
[ [ -1, 8 ], 1, Concat, [ 1 ] ], # cat backbone P5 | |||
[ -1, 3, C3, [ 768, False ] ], # 21 | |||
[-1, 1, Conv, [768, 1, 1]], | |||
[-1, 1, nn.Upsample, [None, 2, 'nearest']], | |||
[[-1, 8], 1, Concat, [1]], # cat backbone P5 | |||
[-1, 3, C3, [768, False]], # 21 | |||
[ -1, 1, Conv, [ 512, 1, 1 ] ], | |||
[ -1, 1, nn.Upsample, [ None, 2, 'nearest' ] ], | |||
[ [ -1, 6 ], 1, Concat, [ 1 ] ], # cat backbone P4 | |||
[ -1, 3, C3, [ 512, False ] ], # 25 | |||
[-1, 1, Conv, [512, 1, 1]], | |||
[-1, 1, nn.Upsample, [None, 2, 'nearest']], | |||
[[-1, 6], 1, Concat, [1]], # cat backbone P4 | |||
[-1, 3, C3, [512, False]], # 25 | |||
[ -1, 1, Conv, [ 256, 1, 1 ] ], | |||
[ -1, 1, nn.Upsample, [ None, 2, 'nearest' ] ], | |||
[ [ -1, 4 ], 1, Concat, [ 1 ] ], # cat backbone P3 | |||
[ -1, 3, C3, [ 256, False ] ], # 29 (P3/8-small) | |||
[-1, 1, Conv, [256, 1, 1]], | |||
[-1, 1, nn.Upsample, [None, 2, 'nearest']], | |||
[[-1, 4], 1, Concat, [1]], # cat backbone P3 | |||
[-1, 3, C3, [256, False]], # 29 (P3/8-small) | |||
[ -1, 1, Conv, [ 256, 3, 2 ] ], | |||
[ [ -1, 26 ], 1, Concat, [ 1 ] ], # cat head P4 | |||
[ -1, 3, C3, [ 512, False ] ], # 32 (P4/16-medium) | |||
[-1, 1, Conv, [256, 3, 2]], | |||
[[-1, 26], 1, Concat, [1]], # cat head P4 | |||
[-1, 3, C3, [512, False]], # 32 (P4/16-medium) | |||
[ -1, 1, Conv, [ 512, 3, 2 ] ], | |||
[ [ -1, 22 ], 1, Concat, [ 1 ] ], # cat head P5 | |||
[ -1, 3, C3, [ 768, False ] ], # 35 (P5/32-large) | |||
[-1, 1, Conv, [512, 3, 2]], | |||
[[-1, 22], 1, Concat, [1]], # cat head P5 | |||
[-1, 3, C3, [768, False]], # 35 (P5/32-large) | |||
[ -1, 1, Conv, [ 768, 3, 2 ] ], | |||
[ [ -1, 18 ], 1, Concat, [ 1 ] ], # cat head P6 | |||
[ -1, 3, C3, [ 1024, False ] ], # 38 (P6/64-xlarge) | |||
[-1, 1, Conv, [768, 3, 2]], | |||
[[-1, 18], 1, Concat, [1]], # cat head P6 | |||
[-1, 3, C3, [1024, False]], # 38 (P6/64-xlarge) | |||
[ -1, 1, Conv, [ 1024, 3, 2 ] ], | |||
[ [ -1, 14 ], 1, Concat, [ 1 ] ], # cat head P7 | |||
[ -1, 3, C3, [ 1280, False ] ], # 41 (P7/128-xxlarge) | |||
[-1, 1, Conv, [1024, 3, 2]], | |||
[[-1, 14], 1, Concat, [1]], # cat head P7 | |||
[-1, 3, C3, [1280, False]], # 41 (P7/128-xxlarge) | |||
[ [ 29, 32, 35, 38, 41 ], 1, Detect, [ nc, anchors ] ], # Detect(P3, P4, P5, P6, P7) | |||
[[29, 32, 35, 38, 41], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5, P6, P7) | |||
] |
@@ -3,44 +3,44 @@ nc: 80 # number of classes | |||
depth_multiple: 1.0 # model depth multiple | |||
width_multiple: 1.0 # layer channel multiple | |||
anchors: | |||
- [ 10,13, 16,30, 33,23 ] # P3/8 | |||
- [ 30,61, 62,45, 59,119 ] # P4/16 | |||
- [ 116,90, 156,198, 373,326 ] # P5/32 | |||
- [10,13, 16,30, 33,23] # P3/8 | |||
- [30,61, 62,45, 59,119] # P4/16 | |||
- [116,90, 156,198, 373,326] # P5/32 | |||
# YOLOv5 backbone | |||
backbone: | |||
# [from, number, module, args] | |||
[ [ -1, 1, Focus, [ 64, 3 ] ], # 0-P1/2 | |||
[ -1, 1, Conv, [ 128, 3, 2 ] ], # 1-P2/4 | |||
[ -1, 3, BottleneckCSP, [ 128 ] ], | |||
[ -1, 1, Conv, [ 256, 3, 2 ] ], # 3-P3/8 | |||
[ -1, 9, BottleneckCSP, [ 256 ] ], | |||
[ -1, 1, Conv, [ 512, 3, 2 ] ], # 5-P4/16 | |||
[ -1, 9, BottleneckCSP, [ 512 ] ], | |||
[ -1, 1, Conv, [ 1024, 3, 2 ] ], # 7-P5/32 | |||
[ -1, 1, SPP, [ 1024, [ 5, 9, 13 ] ] ], | |||
[ -1, 3, BottleneckCSP, [ 1024, False ] ], # 9 | |||
[[-1, 1, Focus, [64, 3]], # 0-P1/2 | |||
[-1, 1, Conv, [128, 3, 2]], # 1-P2/4 | |||
[-1, 3, BottleneckCSP, [128]], | |||
[-1, 1, Conv, [256, 3, 2]], # 3-P3/8 | |||
[-1, 9, BottleneckCSP, [256]], | |||
[-1, 1, Conv, [512, 3, 2]], # 5-P4/16 | |||
[-1, 9, BottleneckCSP, [512]], | |||
[-1, 1, Conv, [1024, 3, 2]], # 7-P5/32 | |||
[-1, 1, SPP, [1024, [5, 9, 13]]], | |||
[-1, 3, BottleneckCSP, [1024, False]], # 9 | |||
] | |||
# YOLOv5 PANet head | |||
head: | |||
[ [ -1, 1, Conv, [ 512, 1, 1 ] ], | |||
[ -1, 1, nn.Upsample, [ None, 2, 'nearest' ] ], | |||
[ [ -1, 6 ], 1, Concat, [ 1 ] ], # cat backbone P4 | |||
[ -1, 3, BottleneckCSP, [ 512, False ] ], # 13 | |||
[[-1, 1, Conv, [512, 1, 1]], | |||
[-1, 1, nn.Upsample, [None, 2, 'nearest']], | |||
[[-1, 6], 1, Concat, [1]], # cat backbone P4 | |||
[-1, 3, BottleneckCSP, [512, False]], # 13 | |||
[ -1, 1, Conv, [ 256, 1, 1 ] ], | |||
[ -1, 1, nn.Upsample, [ None, 2, 'nearest' ] ], | |||
[ [ -1, 4 ], 1, Concat, [ 1 ] ], # cat backbone P3 | |||
[ -1, 3, BottleneckCSP, [ 256, False ] ], # 17 (P3/8-small) | |||
[-1, 1, Conv, [256, 1, 1]], | |||
[-1, 1, nn.Upsample, [None, 2, 'nearest']], | |||
[[-1, 4], 1, Concat, [1]], # cat backbone P3 | |||
[-1, 3, BottleneckCSP, [256, False]], # 17 (P3/8-small) | |||
[ -1, 1, Conv, [ 256, 3, 2 ] ], | |||
[ [ -1, 14 ], 1, Concat, [ 1 ] ], # cat head P4 | |||
[ -1, 3, BottleneckCSP, [ 512, False ] ], # 20 (P4/16-medium) | |||
[-1, 1, Conv, [256, 3, 2]], | |||
[[-1, 14], 1, Concat, [1]], # cat head P4 | |||
[-1, 3, BottleneckCSP, [512, False]], # 20 (P4/16-medium) | |||
[ -1, 1, Conv, [ 512, 3, 2 ] ], | |||
[ [ -1, 10 ], 1, Concat, [ 1 ] ], # cat head P5 | |||
[ -1, 3, BottleneckCSP, [ 1024, False ] ], # 23 (P5/32-large) | |||
[-1, 1, Conv, [512, 3, 2]], | |||
[[-1, 10], 1, Concat, [1]], # cat head P5 | |||
[-1, 3, BottleneckCSP, [1024, False]], # 23 (P5/32-large) | |||
[ [ 17, 20, 23 ], 1, Detect, [ nc, anchors ] ], # Detect(P3, P4, P5) | |||
[[17, 20, 23], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5) | |||
] |
@@ -3,56 +3,56 @@ nc: 80 # number of classes | |||
depth_multiple: 1.0 # model depth multiple | |||
width_multiple: 1.0 # layer channel multiple | |||
anchors: | |||
- [ 19,27, 44,40, 38,94 ] # P3/8 | |||
- [ 96,68, 86,152, 180,137 ] # P4/16 | |||
- [ 140,301, 303,264, 238,542 ] # P5/32 | |||
- [ 436,615, 739,380, 925,792 ] # P6/64 | |||
- [19,27, 44,40, 38,94] # P3/8 | |||
- [96,68, 86,152, 180,137] # P4/16 | |||
- [140,301, 303,264, 238,542] # P5/32 | |||
- [436,615, 739,380, 925,792] # P6/64 | |||
# YOLOv5 backbone | |||
backbone: | |||
# [from, number, module, args] | |||
[ [ -1, 1, Focus, [ 64, 3 ] ], # 0-P1/2 | |||
[ -1, 1, Conv, [ 128, 3, 2 ] ], # 1-P2/4 | |||
[ -1, 3, C3, [ 128 ] ], | |||
[ -1, 1, Conv, [ 256, 3, 2 ] ], # 3-P3/8 | |||
[ -1, 9, C3, [ 256 ] ], | |||
[ -1, 1, Conv, [ 512, 3, 2 ] ], # 5-P4/16 | |||
[ -1, 9, C3, [ 512 ] ], | |||
[ -1, 1, Conv, [ 768, 3, 2 ] ], # 7-P5/32 | |||
[ -1, 3, C3, [ 768 ] ], | |||
[ -1, 1, Conv, [ 1024, 3, 2 ] ], # 9-P6/64 | |||
[ -1, 1, SPP, [ 1024, [ 3, 5, 7 ] ] ], | |||
[ -1, 3, C3, [ 1024, False ] ], # 11 | |||
[[-1, 1, Focus, [64, 3]], # 0-P1/2 | |||
[-1, 1, Conv, [128, 3, 2]], # 1-P2/4 | |||
[-1, 3, C3, [128]], | |||
[-1, 1, Conv, [256, 3, 2]], # 3-P3/8 | |||
[-1, 9, C3, [256]], | |||
[-1, 1, Conv, [512, 3, 2]], # 5-P4/16 | |||
[-1, 9, C3, [512]], | |||
[-1, 1, Conv, [768, 3, 2]], # 7-P5/32 | |||
[-1, 3, C3, [768]], | |||
[-1, 1, Conv, [1024, 3, 2]], # 9-P6/64 | |||
[-1, 1, SPP, [1024, [3, 5, 7]]], | |||
[-1, 3, C3, [1024, False]], # 11 | |||
] | |||
# YOLOv5 head | |||
head: | |||
[ [ -1, 1, Conv, [ 768, 1, 1 ] ], | |||
[ -1, 1, nn.Upsample, [ None, 2, 'nearest' ] ], | |||
[ [ -1, 8 ], 1, Concat, [ 1 ] ], # cat backbone P5 | |||
[ -1, 3, C3, [ 768, False ] ], # 15 | |||
[ -1, 1, Conv, [ 512, 1, 1 ] ], | |||
[ -1, 1, nn.Upsample, [ None, 2, 'nearest' ] ], | |||
[ [ -1, 6 ], 1, Concat, [ 1 ] ], # cat backbone P4 | |||
[ -1, 3, C3, [ 512, False ] ], # 19 | |||
[ -1, 1, Conv, [ 256, 1, 1 ] ], | |||
[ -1, 1, nn.Upsample, [ None, 2, 'nearest' ] ], | |||
[ [ -1, 4 ], 1, Concat, [ 1 ] ], # cat backbone P3 | |||
[ -1, 3, C3, [ 256, False ] ], # 23 (P3/8-small) | |||
[ -1, 1, Conv, [ 256, 3, 2 ] ], | |||
[ [ -1, 20 ], 1, Concat, [ 1 ] ], # cat head P4 | |||
[ -1, 3, C3, [ 512, False ] ], # 26 (P4/16-medium) | |||
[ -1, 1, Conv, [ 512, 3, 2 ] ], | |||
[ [ -1, 16 ], 1, Concat, [ 1 ] ], # cat head P5 | |||
[ -1, 3, C3, [ 768, False ] ], # 29 (P5/32-large) | |||
[ -1, 1, Conv, [ 768, 3, 2 ] ], | |||
[ [ -1, 12 ], 1, Concat, [ 1 ] ], # cat head P6 | |||
[ -1, 3, C3, [ 1024, False ] ], # 32 (P6/64-xlarge) | |||
[ [ 23, 26, 29, 32 ], 1, Detect, [ nc, anchors ] ], # Detect(P3, P4, P5, P6) | |||
[[-1, 1, Conv, [768, 1, 1]], | |||
[-1, 1, nn.Upsample, [None, 2, 'nearest']], | |||
[[-1, 8], 1, Concat, [1]], # cat backbone P5 | |||
[-1, 3, C3, [768, False]], # 15 | |||
[-1, 1, Conv, [512, 1, 1]], | |||
[-1, 1, nn.Upsample, [None, 2, 'nearest']], | |||
[[-1, 6], 1, Concat, [1]], # cat backbone P4 | |||
[-1, 3, C3, [512, False]], # 19 | |||
[-1, 1, Conv, [256, 1, 1]], | |||
[-1, 1, nn.Upsample, [None, 2, 'nearest']], | |||
[[-1, 4], 1, Concat, [1]], # cat backbone P3 | |||
[-1, 3, C3, [256, False]], # 23 (P3/8-small) | |||
[-1, 1, Conv, [256, 3, 2]], | |||
[[-1, 20], 1, Concat, [1]], # cat head P4 | |||
[-1, 3, C3, [512, False]], # 26 (P4/16-medium) | |||
[-1, 1, Conv, [512, 3, 2]], | |||
[[-1, 16], 1, Concat, [1]], # cat head P5 | |||
[-1, 3, C3, [768, False]], # 29 (P5/32-large) | |||
[-1, 1, Conv, [768, 3, 2]], | |||
[[-1, 12], 1, Concat, [1]], # cat head P6 | |||
[-1, 3, C3, [1024, False]], # 32 (P6/64-xlarge) | |||
[[23, 26, 29, 32], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5, P6) | |||
] |
@@ -3,56 +3,56 @@ nc: 80 # number of classes | |||
depth_multiple: 0.67 # model depth multiple | |||
width_multiple: 0.75 # layer channel multiple | |||
anchors: | |||
- [ 19,27, 44,40, 38,94 ] # P3/8 | |||
- [ 96,68, 86,152, 180,137 ] # P4/16 | |||
- [ 140,301, 303,264, 238,542 ] # P5/32 | |||
- [ 436,615, 739,380, 925,792 ] # P6/64 | |||
- [19,27, 44,40, 38,94] # P3/8 | |||
- [96,68, 86,152, 180,137] # P4/16 | |||
- [140,301, 303,264, 238,542] # P5/32 | |||
- [436,615, 739,380, 925,792] # P6/64 | |||
# YOLOv5 backbone | |||
backbone: | |||
# [from, number, module, args] | |||
[ [ -1, 1, Focus, [ 64, 3 ] ], # 0-P1/2 | |||
[ -1, 1, Conv, [ 128, 3, 2 ] ], # 1-P2/4 | |||
[ -1, 3, C3, [ 128 ] ], | |||
[ -1, 1, Conv, [ 256, 3, 2 ] ], # 3-P3/8 | |||
[ -1, 9, C3, [ 256 ] ], | |||
[ -1, 1, Conv, [ 512, 3, 2 ] ], # 5-P4/16 | |||
[ -1, 9, C3, [ 512 ] ], | |||
[ -1, 1, Conv, [ 768, 3, 2 ] ], # 7-P5/32 | |||
[ -1, 3, C3, [ 768 ] ], | |||
[ -1, 1, Conv, [ 1024, 3, 2 ] ], # 9-P6/64 | |||
[ -1, 1, SPP, [ 1024, [ 3, 5, 7 ] ] ], | |||
[ -1, 3, C3, [ 1024, False ] ], # 11 | |||
[[-1, 1, Focus, [64, 3]], # 0-P1/2 | |||
[-1, 1, Conv, [128, 3, 2]], # 1-P2/4 | |||
[-1, 3, C3, [128]], | |||
[-1, 1, Conv, [256, 3, 2]], # 3-P3/8 | |||
[-1, 9, C3, [256]], | |||
[-1, 1, Conv, [512, 3, 2]], # 5-P4/16 | |||
[-1, 9, C3, [512]], | |||
[-1, 1, Conv, [768, 3, 2]], # 7-P5/32 | |||
[-1, 3, C3, [768]], | |||
[-1, 1, Conv, [1024, 3, 2]], # 9-P6/64 | |||
[-1, 1, SPP, [1024, [3, 5, 7]]], | |||
[-1, 3, C3, [1024, False]], # 11 | |||
] | |||
# YOLOv5 head | |||
head: | |||
[ [ -1, 1, Conv, [ 768, 1, 1 ] ], | |||
[ -1, 1, nn.Upsample, [ None, 2, 'nearest' ] ], | |||
[ [ -1, 8 ], 1, Concat, [ 1 ] ], # cat backbone P5 | |||
[ -1, 3, C3, [ 768, False ] ], # 15 | |||
[ -1, 1, Conv, [ 512, 1, 1 ] ], | |||
[ -1, 1, nn.Upsample, [ None, 2, 'nearest' ] ], | |||
[ [ -1, 6 ], 1, Concat, [ 1 ] ], # cat backbone P4 | |||
[ -1, 3, C3, [ 512, False ] ], # 19 | |||
[ -1, 1, Conv, [ 256, 1, 1 ] ], | |||
[ -1, 1, nn.Upsample, [ None, 2, 'nearest' ] ], | |||
[ [ -1, 4 ], 1, Concat, [ 1 ] ], # cat backbone P3 | |||
[ -1, 3, C3, [ 256, False ] ], # 23 (P3/8-small) | |||
[ -1, 1, Conv, [ 256, 3, 2 ] ], | |||
[ [ -1, 20 ], 1, Concat, [ 1 ] ], # cat head P4 | |||
[ -1, 3, C3, [ 512, False ] ], # 26 (P4/16-medium) | |||
[ -1, 1, Conv, [ 512, 3, 2 ] ], | |||
[ [ -1, 16 ], 1, Concat, [ 1 ] ], # cat head P5 | |||
[ -1, 3, C3, [ 768, False ] ], # 29 (P5/32-large) | |||
[ -1, 1, Conv, [ 768, 3, 2 ] ], | |||
[ [ -1, 12 ], 1, Concat, [ 1 ] ], # cat head P6 | |||
[ -1, 3, C3, [ 1024, False ] ], # 32 (P6/64-xlarge) | |||
[ [ 23, 26, 29, 32 ], 1, Detect, [ nc, anchors ] ], # Detect(P3, P4, P5, P6) | |||
[[-1, 1, Conv, [768, 1, 1]], | |||
[-1, 1, nn.Upsample, [None, 2, 'nearest']], | |||
[[-1, 8], 1, Concat, [1]], # cat backbone P5 | |||
[-1, 3, C3, [768, False]], # 15 | |||
[-1, 1, Conv, [512, 1, 1]], | |||
[-1, 1, nn.Upsample, [None, 2, 'nearest']], | |||
[[-1, 6], 1, Concat, [1]], # cat backbone P4 | |||
[-1, 3, C3, [512, False]], # 19 | |||
[-1, 1, Conv, [256, 1, 1]], | |||
[-1, 1, nn.Upsample, [None, 2, 'nearest']], | |||
[[-1, 4], 1, Concat, [1]], # cat backbone P3 | |||
[-1, 3, C3, [256, False]], # 23 (P3/8-small) | |||
[-1, 1, Conv, [256, 3, 2]], | |||
[[-1, 20], 1, Concat, [1]], # cat head P4 | |||
[-1, 3, C3, [512, False]], # 26 (P4/16-medium) | |||
[-1, 1, Conv, [512, 3, 2]], | |||
[[-1, 16], 1, Concat, [1]], # cat head P5 | |||
[-1, 3, C3, [768, False]], # 29 (P5/32-large) | |||
[-1, 1, Conv, [768, 3, 2]], | |||
[[-1, 12], 1, Concat, [1]], # cat head P6 | |||
[-1, 3, C3, [1024, False]], # 32 (P6/64-xlarge) | |||
[[23, 26, 29, 32], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5, P6) | |||
] |
@@ -3,44 +3,44 @@ nc: 80 # number of classes | |||
depth_multiple: 0.33 # model depth multiple | |||
width_multiple: 0.50 # layer channel multiple | |||
anchors: | |||
- [ 10,13, 16,30, 33,23 ] # P3/8 | |||
- [ 30,61, 62,45, 59,119 ] # P4/16 | |||
- [ 116,90, 156,198, 373,326 ] # P5/32 | |||
- [10,13, 16,30, 33,23] # P3/8 | |||
- [30,61, 62,45, 59,119] # P4/16 | |||
- [116,90, 156,198, 373,326] # P5/32 | |||
# YOLOv5 backbone | |||
backbone: | |||
# [from, number, module, args] | |||
[ [ -1, 1, Focus, [ 64, 3 ] ], # 0-P1/2 | |||
[ -1, 1, Conv, [ 128, 3, 2 ] ], # 1-P2/4 | |||
[ -1, 3, C3, [ 128 ] ], | |||
[ -1, 1, Conv, [ 256, 3, 2 ] ], # 3-P3/8 | |||
[ -1, 9, C3, [ 256 ] ], | |||
[ -1, 1, Conv, [ 512, 3, 2 ] ], # 5-P4/16 | |||
[ -1, 9, C3, [ 512 ] ], | |||
[ -1, 1, Conv, [ 1024, 3, 2 ] ], # 7-P5/32 | |||
[ -1, 1, SPP, [ 1024, [ 5, 9, 13 ] ] ], | |||
[ -1, 3, C3TR, [ 1024, False ] ], # 9 <-------- C3TR() Transformer module | |||
[[-1, 1, Focus, [64, 3]], # 0-P1/2 | |||
[-1, 1, Conv, [128, 3, 2]], # 1-P2/4 | |||
[-1, 3, C3, [128]], | |||
[-1, 1, Conv, [256, 3, 2]], # 3-P3/8 | |||
[-1, 9, C3, [256]], | |||
[-1, 1, Conv, [512, 3, 2]], # 5-P4/16 | |||
[-1, 9, C3, [512]], | |||
[-1, 1, Conv, [1024, 3, 2]], # 7-P5/32 | |||
[-1, 1, SPP, [1024, [5, 9, 13]]], | |||
[-1, 3, C3TR, [1024, False]], # 9 <-------- C3TR() Transformer module | |||
] | |||
# YOLOv5 head | |||
head: | |||
[ [ -1, 1, Conv, [ 512, 1, 1 ] ], | |||
[ -1, 1, nn.Upsample, [ None, 2, 'nearest' ] ], | |||
[ [ -1, 6 ], 1, Concat, [ 1 ] ], # cat backbone P4 | |||
[ -1, 3, C3, [ 512, False ] ], # 13 | |||
[[-1, 1, Conv, [512, 1, 1]], | |||
[-1, 1, nn.Upsample, [None, 2, 'nearest']], | |||
[[-1, 6], 1, Concat, [1]], # cat backbone P4 | |||
[-1, 3, C3, [512, False]], # 13 | |||
[ -1, 1, Conv, [ 256, 1, 1 ] ], | |||
[ -1, 1, nn.Upsample, [ None, 2, 'nearest' ] ], | |||
[ [ -1, 4 ], 1, Concat, [ 1 ] ], # cat backbone P3 | |||
[ -1, 3, C3, [ 256, False ] ], # 17 (P3/8-small) | |||
[-1, 1, Conv, [256, 1, 1]], | |||
[-1, 1, nn.Upsample, [None, 2, 'nearest']], | |||
[[-1, 4], 1, Concat, [1]], # cat backbone P3 | |||
[-1, 3, C3, [256, False]], # 17 (P3/8-small) | |||
[ -1, 1, Conv, [ 256, 3, 2 ] ], | |||
[ [ -1, 14 ], 1, Concat, [ 1 ] ], # cat head P4 | |||
[ -1, 3, C3, [ 512, False ] ], # 20 (P4/16-medium) | |||
[-1, 1, Conv, [256, 3, 2]], | |||
[[-1, 14], 1, Concat, [1]], # cat head P4 | |||
[-1, 3, C3, [512, False]], # 20 (P4/16-medium) | |||
[ -1, 1, Conv, [ 512, 3, 2 ] ], | |||
[ [ -1, 10 ], 1, Concat, [ 1 ] ], # cat head P5 | |||
[ -1, 3, C3, [ 1024, False ] ], # 23 (P5/32-large) | |||
[-1, 1, Conv, [512, 3, 2]], | |||
[[-1, 10], 1, Concat, [1]], # cat head P5 | |||
[-1, 3, C3, [1024, False]], # 23 (P5/32-large) | |||
[ [ 17, 20, 23 ], 1, Detect, [ nc, anchors ] ], # Detect(P3, P4, P5) | |||
[[17, 20, 23], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5) | |||
] |
@@ -3,56 +3,56 @@ nc: 80 # number of classes | |||
depth_multiple: 0.33 # model depth multiple | |||
width_multiple: 0.50 # layer channel multiple | |||
anchors: | |||
- [ 19,27, 44,40, 38,94 ] # P3/8 | |||
- [ 96,68, 86,152, 180,137 ] # P4/16 | |||
- [ 140,301, 303,264, 238,542 ] # P5/32 | |||
- [ 436,615, 739,380, 925,792 ] # P6/64 | |||
- [19,27, 44,40, 38,94] # P3/8 | |||
- [96,68, 86,152, 180,137] # P4/16 | |||
- [140,301, 303,264, 238,542] # P5/32 | |||
- [436,615, 739,380, 925,792] # P6/64 | |||
# YOLOv5 backbone | |||
backbone: | |||
# [from, number, module, args] | |||
[ [ -1, 1, Focus, [ 64, 3 ] ], # 0-P1/2 | |||
[ -1, 1, Conv, [ 128, 3, 2 ] ], # 1-P2/4 | |||
[ -1, 3, C3, [ 128 ] ], | |||
[ -1, 1, Conv, [ 256, 3, 2 ] ], # 3-P3/8 | |||
[ -1, 9, C3, [ 256 ] ], | |||
[ -1, 1, Conv, [ 512, 3, 2 ] ], # 5-P4/16 | |||
[ -1, 9, C3, [ 512 ] ], | |||
[ -1, 1, Conv, [ 768, 3, 2 ] ], # 7-P5/32 | |||
[ -1, 3, C3, [ 768 ] ], | |||
[ -1, 1, Conv, [ 1024, 3, 2 ] ], # 9-P6/64 | |||
[ -1, 1, SPP, [ 1024, [ 3, 5, 7 ] ] ], | |||
[ -1, 3, C3, [ 1024, False ] ], # 11 | |||
[[-1, 1, Focus, [64, 3]], # 0-P1/2 | |||
[-1, 1, Conv, [128, 3, 2]], # 1-P2/4 | |||
[-1, 3, C3, [128]], | |||
[-1, 1, Conv, [256, 3, 2]], # 3-P3/8 | |||
[-1, 9, C3, [256]], | |||
[-1, 1, Conv, [512, 3, 2]], # 5-P4/16 | |||
[-1, 9, C3, [512]], | |||
[-1, 1, Conv, [768, 3, 2]], # 7-P5/32 | |||
[-1, 3, C3, [768]], | |||
[-1, 1, Conv, [1024, 3, 2]], # 9-P6/64 | |||
[-1, 1, SPP, [1024, [3, 5, 7]]], | |||
[-1, 3, C3, [1024, False]], # 11 | |||
] | |||
# YOLOv5 head | |||
head: | |||
[ [ -1, 1, Conv, [ 768, 1, 1 ] ], | |||
[ -1, 1, nn.Upsample, [ None, 2, 'nearest' ] ], | |||
[ [ -1, 8 ], 1, Concat, [ 1 ] ], # cat backbone P5 | |||
[ -1, 3, C3, [ 768, False ] ], # 15 | |||
[ -1, 1, Conv, [ 512, 1, 1 ] ], | |||
[ -1, 1, nn.Upsample, [ None, 2, 'nearest' ] ], | |||
[ [ -1, 6 ], 1, Concat, [ 1 ] ], # cat backbone P4 | |||
[ -1, 3, C3, [ 512, False ] ], # 19 | |||
[ -1, 1, Conv, [ 256, 1, 1 ] ], | |||
[ -1, 1, nn.Upsample, [ None, 2, 'nearest' ] ], | |||
[ [ -1, 4 ], 1, Concat, [ 1 ] ], # cat backbone P3 | |||
[ -1, 3, C3, [ 256, False ] ], # 23 (P3/8-small) | |||
[ -1, 1, Conv, [ 256, 3, 2 ] ], | |||
[ [ -1, 20 ], 1, Concat, [ 1 ] ], # cat head P4 | |||
[ -1, 3, C3, [ 512, False ] ], # 26 (P4/16-medium) | |||
[ -1, 1, Conv, [ 512, 3, 2 ] ], | |||
[ [ -1, 16 ], 1, Concat, [ 1 ] ], # cat head P5 | |||
[ -1, 3, C3, [ 768, False ] ], # 29 (P5/32-large) | |||
[ -1, 1, Conv, [ 768, 3, 2 ] ], | |||
[ [ -1, 12 ], 1, Concat, [ 1 ] ], # cat head P6 | |||
[ -1, 3, C3, [ 1024, False ] ], # 32 (P6/64-xlarge) | |||
[ [ 23, 26, 29, 32 ], 1, Detect, [ nc, anchors ] ], # Detect(P3, P4, P5, P6) | |||
[[-1, 1, Conv, [768, 1, 1]], | |||
[-1, 1, nn.Upsample, [None, 2, 'nearest']], | |||
[[-1, 8], 1, Concat, [1]], # cat backbone P5 | |||
[-1, 3, C3, [768, False]], # 15 | |||
[-1, 1, Conv, [512, 1, 1]], | |||
[-1, 1, nn.Upsample, [None, 2, 'nearest']], | |||
[[-1, 6], 1, Concat, [1]], # cat backbone P4 | |||
[-1, 3, C3, [512, False]], # 19 | |||
[-1, 1, Conv, [256, 1, 1]], | |||
[-1, 1, nn.Upsample, [None, 2, 'nearest']], | |||
[[-1, 4], 1, Concat, [1]], # cat backbone P3 | |||
[-1, 3, C3, [256, False]], # 23 (P3/8-small) | |||
[-1, 1, Conv, [256, 3, 2]], | |||
[[-1, 20], 1, Concat, [1]], # cat head P4 | |||
[-1, 3, C3, [512, False]], # 26 (P4/16-medium) | |||
[-1, 1, Conv, [512, 3, 2]], | |||
[[-1, 16], 1, Concat, [1]], # cat head P5 | |||
[-1, 3, C3, [768, False]], # 29 (P5/32-large) | |||
[-1, 1, Conv, [768, 3, 2]], | |||
[[-1, 12], 1, Concat, [1]], # cat head P6 | |||
[-1, 3, C3, [1024, False]], # 32 (P6/64-xlarge) | |||
[[23, 26, 29, 32], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5, P6) | |||
] |
@@ -3,56 +3,56 @@ nc: 80 # number of classes | |||
depth_multiple: 1.33 # model depth multiple | |||
width_multiple: 1.25 # layer channel multiple | |||
anchors: | |||
- [ 19,27, 44,40, 38,94 ] # P3/8 | |||
- [ 96,68, 86,152, 180,137 ] # P4/16 | |||
- [ 140,301, 303,264, 238,542 ] # P5/32 | |||
- [ 436,615, 739,380, 925,792 ] # P6/64 | |||
- [19,27, 44,40, 38,94] # P3/8 | |||
- [96,68, 86,152, 180,137] # P4/16 | |||
- [140,301, 303,264, 238,542] # P5/32 | |||
- [436,615, 739,380, 925,792] # P6/64 | |||
# YOLOv5 backbone | |||
backbone: | |||
# [from, number, module, args] | |||
[ [ -1, 1, Focus, [ 64, 3 ] ], # 0-P1/2 | |||
[ -1, 1, Conv, [ 128, 3, 2 ] ], # 1-P2/4 | |||
[ -1, 3, C3, [ 128 ] ], | |||
[ -1, 1, Conv, [ 256, 3, 2 ] ], # 3-P3/8 | |||
[ -1, 9, C3, [ 256 ] ], | |||
[ -1, 1, Conv, [ 512, 3, 2 ] ], # 5-P4/16 | |||
[ -1, 9, C3, [ 512 ] ], | |||
[ -1, 1, Conv, [ 768, 3, 2 ] ], # 7-P5/32 | |||
[ -1, 3, C3, [ 768 ] ], | |||
[ -1, 1, Conv, [ 1024, 3, 2 ] ], # 9-P6/64 | |||
[ -1, 1, SPP, [ 1024, [ 3, 5, 7 ] ] ], | |||
[ -1, 3, C3, [ 1024, False ] ], # 11 | |||
[[-1, 1, Focus, [64, 3]], # 0-P1/2 | |||
[-1, 1, Conv, [128, 3, 2]], # 1-P2/4 | |||
[-1, 3, C3, [128]], | |||
[-1, 1, Conv, [256, 3, 2]], # 3-P3/8 | |||
[-1, 9, C3, [256]], | |||
[-1, 1, Conv, [512, 3, 2]], # 5-P4/16 | |||
[-1, 9, C3, [512]], | |||
[-1, 1, Conv, [768, 3, 2]], # 7-P5/32 | |||
[-1, 3, C3, [768]], | |||
[-1, 1, Conv, [1024, 3, 2]], # 9-P6/64 | |||
[-1, 1, SPP, [1024, [3, 5, 7]]], | |||
[-1, 3, C3, [1024, False]], # 11 | |||
] | |||
# YOLOv5 head | |||
head: | |||
[ [ -1, 1, Conv, [ 768, 1, 1 ] ], | |||
[ -1, 1, nn.Upsample, [ None, 2, 'nearest' ] ], | |||
[ [ -1, 8 ], 1, Concat, [ 1 ] ], # cat backbone P5 | |||
[ -1, 3, C3, [ 768, False ] ], # 15 | |||
[ -1, 1, Conv, [ 512, 1, 1 ] ], | |||
[ -1, 1, nn.Upsample, [ None, 2, 'nearest' ] ], | |||
[ [ -1, 6 ], 1, Concat, [ 1 ] ], # cat backbone P4 | |||
[ -1, 3, C3, [ 512, False ] ], # 19 | |||
[ -1, 1, Conv, [ 256, 1, 1 ] ], | |||
[ -1, 1, nn.Upsample, [ None, 2, 'nearest' ] ], | |||
[ [ -1, 4 ], 1, Concat, [ 1 ] ], # cat backbone P3 | |||
[ -1, 3, C3, [ 256, False ] ], # 23 (P3/8-small) | |||
[ -1, 1, Conv, [ 256, 3, 2 ] ], | |||
[ [ -1, 20 ], 1, Concat, [ 1 ] ], # cat head P4 | |||
[ -1, 3, C3, [ 512, False ] ], # 26 (P4/16-medium) | |||
[ -1, 1, Conv, [ 512, 3, 2 ] ], | |||
[ [ -1, 16 ], 1, Concat, [ 1 ] ], # cat head P5 | |||
[ -1, 3, C3, [ 768, False ] ], # 29 (P5/32-large) | |||
[ -1, 1, Conv, [ 768, 3, 2 ] ], | |||
[ [ -1, 12 ], 1, Concat, [ 1 ] ], # cat head P6 | |||
[ -1, 3, C3, [ 1024, False ] ], # 32 (P6/64-xlarge) | |||
[ [ 23, 26, 29, 32 ], 1, Detect, [ nc, anchors ] ], # Detect(P3, P4, P5, P6) | |||
[[-1, 1, Conv, [768, 1, 1]], | |||
[-1, 1, nn.Upsample, [None, 2, 'nearest']], | |||
[[-1, 8], 1, Concat, [1]], # cat backbone P5 | |||
[-1, 3, C3, [768, False]], # 15 | |||
[-1, 1, Conv, [512, 1, 1]], | |||
[-1, 1, nn.Upsample, [None, 2, 'nearest']], | |||
[[-1, 6], 1, Concat, [1]], # cat backbone P4 | |||
[-1, 3, C3, [512, False]], # 19 | |||
[-1, 1, Conv, [256, 1, 1]], | |||
[-1, 1, nn.Upsample, [None, 2, 'nearest']], | |||
[[-1, 4], 1, Concat, [1]], # cat backbone P3 | |||
[-1, 3, C3, [256, False]], # 23 (P3/8-small) | |||
[-1, 1, Conv, [256, 3, 2]], | |||
[[-1, 20], 1, Concat, [1]], # cat head P4 | |||
[-1, 3, C3, [512, False]], # 26 (P4/16-medium) | |||
[-1, 1, Conv, [512, 3, 2]], | |||
[[-1, 16], 1, Concat, [1]], # cat head P5 | |||
[-1, 3, C3, [768, False]], # 29 (P5/32-large) | |||
[-1, 1, Conv, [768, 3, 2]], | |||
[[-1, 12], 1, Concat, [1]], # cat head P6 | |||
[-1, 3, C3, [1024, False]], # 32 (P6/64-xlarge) | |||
[[23, 26, 29, 32], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5, P6) | |||
] |
@@ -74,7 +74,7 @@ def train(hyp, # path/to/hyp.yaml or hyp dictionary | |||
with open(save_dir / 'opt.yaml', 'w') as f: | |||
yaml.safe_dump(vars(opt), f, sort_keys=False) | |||
data_dict = None | |||
# Loggers | |||
if RANK in [-1, 0]: | |||
loggers = Loggers(save_dir, weights, opt, hyp, LOGGER).start() # loggers dict | |||
@@ -83,7 +83,6 @@ def train(hyp, # path/to/hyp.yaml or hyp dictionary | |||
if resume: | |||
weights, epochs, hyp = opt.weights, opt.epochs, opt.hyp | |||
# Config | |||
plots = not evolve # create plots | |||
cuda = device.type != 'cpu' | |||
@@ -96,7 +95,6 @@ def train(hyp, # path/to/hyp.yaml or hyp dictionary | |||
assert len(names) == nc, f'{len(names)} names found for nc={nc} dataset in {data}' # check | |||
is_coco = data.endswith('coco.yaml') and nc == 80 # COCO dataset | |||
# Model | |||
pretrained = weights.endswith('.pt') | |||
if pretrained: |
@@ -115,7 +115,6 @@ def get_token(cookie="./cookie"): | |||
return line.split()[-1] | |||
return "" | |||
# Google utils: https://cloud.google.com/storage/docs/reference/libraries ---------------------------------------------- | |||
# | |||
# |
@@ -1,7 +1,8 @@ | |||
# YOLOv5 experiment logging utils | |||
import torch | |||
import warnings | |||
from threading import Thread | |||
import torch | |||
from torch.utils.tensorboard import SummaryWriter | |||
from utils.general import colorstr, emojis |
@@ -1,5 +1,4 @@ | |||
import argparse | |||
import yaml | |||
from wandb_utils import WandbLogger | |||
@@ -1,7 +1,8 @@ | |||
import sys | |||
import wandb | |||
from pathlib import Path | |||
import wandb | |||
FILE = Path(__file__).absolute() | |||
sys.path.append(FILE.parents[2].as_posix()) # add utils/ to path | |||
@@ -25,9 +25,9 @@ parameters: | |||
data: | |||
value: "data/coco128.yaml" | |||
batch_size: | |||
values: [ 64 ] | |||
values: [64] | |||
epochs: | |||
values: [ 10 ] | |||
values: [10] | |||
lr0: | |||
distribution: uniform |
@@ -3,9 +3,10 @@ | |||
import logging | |||
import os | |||
import sys | |||
import yaml | |||
from contextlib import contextmanager | |||
from pathlib import Path | |||
import yaml | |||
from tqdm import tqdm | |||
FILE = Path(__file__).absolute() |
@@ -13,7 +13,6 @@ from threading import Thread | |||
import numpy as np | |||
import torch | |||
import yaml | |||
from tqdm import tqdm | |||
FILE = Path(__file__).absolute() |