|
|
@@ -17,12 +17,13 @@ import cv2 |
|
|
|
import numpy as np |
|
|
|
import torch |
|
|
|
import torch.nn.functional as F |
|
|
|
import yaml |
|
|
|
from PIL import Image, ExifTags |
|
|
|
from torch.utils.data import Dataset |
|
|
|
from tqdm import tqdm |
|
|
|
|
|
|
|
from utils.general import check_requirements, xyxy2xywh, xywh2xyxy, xywhn2xyxy, xyn2xy, segment2box, segments2boxes, \ |
|
|
|
resample_segments, clean_str |
|
|
|
from utils.general import check_requirements, check_file, check_dataset, xyxy2xywh, xywh2xyxy, xywhn2xyxy, xyn2xy, \ |
|
|
|
segment2box, segments2boxes, resample_segments, clean_str |
|
|
|
from utils.torch_utils import torch_distributed_zero_first |
|
|
|
|
|
|
|
# Parameters |
|
|
@@ -1083,3 +1084,34 @@ def verify_image_label(params): |
|
|
|
nc = 1 |
|
|
|
logging.info(f'{prefix}WARNING: Ignoring corrupted image and/or label {im_file}: {e}') |
|
|
|
return [None] * 4 + [nm, nf, ne, nc] |
|
|
|
|
|
|
|
|
|
|
|
def dataset_stats(path='data/coco128.yaml', verbose=False): |
|
|
|
""" Return dataset statistics dictionary with images and instances counts per split per class |
|
|
|
Usage: from utils.datasets import *; dataset_stats('data/coco128.yaml') |
|
|
|
Arguments |
|
|
|
path: Path to data.yaml |
|
|
|
verbose: Print stats dictionary |
|
|
|
""" |
|
|
|
path = check_file(Path(path)) |
|
|
|
with open(path) as f: |
|
|
|
data = yaml.safe_load(f) # data dict |
|
|
|
check_dataset(data) # download dataset if missing |
|
|
|
|
|
|
|
nc = data['nc'] # number of classes |
|
|
|
stats = {'nc': nc, 'names': data['names']} # statistics dictionary |
|
|
|
for split in 'train', 'val', 'test': |
|
|
|
if split not in data: |
|
|
|
stats[split] = None # i.e. no test set |
|
|
|
continue |
|
|
|
x = [] |
|
|
|
dataset = LoadImagesAndLabels(data[split], augment=False, rect=True) # load dataset |
|
|
|
for label in tqdm(dataset.labels, total=dataset.n, desc='Statistics'): |
|
|
|
x.append(np.bincount(label[:, 0].astype(int), minlength=nc)) |
|
|
|
x = np.array(x) # shape(128x80) |
|
|
|
stats[split] = {'instances': {'total': int(x.sum()), 'per_class': x.sum(0).tolist()}, |
|
|
|
'images': {'total': dataset.n, 'unlabelled': int(np.all(x == 0, 1).sum()), |
|
|
|
'per_class': (x > 0).sum(0).tolist()}} |
|
|
|
if verbose: |
|
|
|
print(yaml.dump([stats], sort_keys=False, default_flow_style=False)) |
|
|
|
return stats |