@@ -73,6 +73,7 @@ def test(data, | |||
batch_size, | |||
rect=True, # rectangular inference | |||
single_cls=opt.single_cls, # single class mode | |||
stride=int(max(model.stride)), # model stride | |||
pad=0.5) # padding | |||
batch_size = min(batch_size, len(dataset)) | |||
nw = min([os.cpu_count(), batch_size if batch_size > 1 else 0, 8]) # number of workers |
@@ -160,7 +160,8 @@ def train(hyp): | |||
hyp=hyp, # augmentation hyperparameters | |||
rect=opt.rect, # rectangular training | |||
cache_images=opt.cache_images, | |||
single_cls=opt.single_cls) | |||
single_cls=opt.single_cls, | |||
stride=gs) | |||
mlc = np.concatenate(dataset.labels, 0)[:, 0].max() # max label class | |||
assert mlc < nc, 'Label class %g exceeds nc=%g in %s. Correct your labels or your model.' % (mlc, nc, opt.cfg) | |||
@@ -179,7 +180,8 @@ def train(hyp): | |||
hyp=hyp, | |||
rect=True, | |||
cache_images=opt.cache_images, | |||
single_cls=opt.single_cls), | |||
single_cls=opt.single_cls, | |||
stride=gs), | |||
batch_size=batch_size, | |||
num_workers=nw, | |||
pin_memory=True, |
@@ -258,7 +258,7 @@ class LoadStreams: # multiple IP or RTSP cameras | |||
class LoadImagesAndLabels(Dataset): # for training/testing | |||
def __init__(self, path, img_size=416, batch_size=16, augment=False, hyp=None, rect=False, image_weights=False, | |||
cache_images=False, single_cls=False, pad=0.0): | |||
cache_images=False, single_cls=False, stride=32, pad=0.0): | |||
try: | |||
path = str(Path(path)) # os-agnostic | |||
parent = str(Path(path).parent) + os.sep | |||
@@ -325,7 +325,7 @@ class LoadImagesAndLabels(Dataset): # for training/testing | |||
elif mini > 1: | |||
shapes[i] = [1, 1 / mini] | |||
self.batch_shapes = np.ceil(np.array(shapes) * img_size / 32. + pad).astype(np.int) * 32 | |||
self.batch_shapes = np.ceil(np.array(shapes) * img_size / stride + pad).astype(np.int) * stride | |||
# Cache labels | |||
self.imgs = [None] * n |