Browse Source

model.names for dataParallel

5.0
Glenn Jocher 4 years ago
parent
commit
ba9ab663a2
2 changed files with 7 additions and 5 deletions
  1. +1
    -1
      detect.py
  2. +6
    -4
      test.py

+ 1
- 1
detect.py View File

@@ -51,7 +51,7 @@ def detect(save_img=False):
dataset = LoadImages(source, img_size=imgsz)

# Get names and colors
names = model.names
names = model.module.names if hasattr(model, 'module') else model.names
colors = [[random.randint(0, 255) for _ in range(3)] for _ in range(len(names))]

# Run inference

+ 6
- 4
test.py View File

@@ -65,15 +65,17 @@ def test(data,
single_cls=opt.single_cls, # single class mode
pad=0.0 if fast else 0.5) # padding
batch_size = min(batch_size, len(dataset))
nw = min([os.cpu_count(), batch_size if batch_size > 1 else 0, 8]) # number of workers
dataloader = DataLoader(dataset,
batch_size=batch_size,
num_workers=min([os.cpu_count(), batch_size if batch_size > 1 else 0, 8]),
num_workers=nw,
pin_memory=True,
collate_fn=dataset.collate_fn)

seen = 0
model.eval()
_ = model(torch.zeros((1, 3, imgsz, imgsz), device=device)) if device.type != 'cpu' else None # run once
names = model.module.names if hasattr(model, 'module') else model.names
coco91class = coco80_to_coco91_class()
s = ('%20s' + '%12s' * 6) % ('Class', 'Images', 'Targets', 'P', 'R', 'mAP@.5', 'mAP@.5:.95')
p, r, f1, mp, mr, map50, map, t0, t1 = 0., 0., 0., 0., 0., 0., 0., 0., 0.
@@ -168,9 +170,9 @@ def test(data,
# Plot images
if batch_i < 1:
f = 'test_batch%g_gt.jpg' % batch_i # filename
plot_images(imgs, targets, paths, f, model.names) # ground truth
plot_images(imgs, targets, paths, f, names) # ground truth
f = 'test_batch%g_pred.jpg' % batch_i
plot_images(imgs, output_to_target(output, width, height), paths, f, model.names) # predictions
plot_images(imgs, output_to_target(output, width, height), paths, f, names) # predictions

# Compute statistics
stats = [np.concatenate(x, 0) for x in zip(*stats)] # to numpy
@@ -189,7 +191,7 @@ def test(data,
# Print results per class
if verbose and nc > 1 and len(stats):
for i, c in enumerate(ap_class):
print(pf % (model.names[c], seen, nt[c], p[i], r[i], ap50[i], ap[i]))
print(pf % (names[c], seen, nt[c], p[i], r[i], ap50[i], ap[i]))

# Print speeds
t = tuple(x / seen * 1E3 for x in (t0, t1, t0 + t1)) + (imgsz, imgsz, batch_size) # tuple

Loading…
Cancel
Save