|
|
@@ -719,7 +719,7 @@ def kmean_anchors(path='./data/coco128.yaml', n=9, img_size=640, thr=4.0, gen=10 |
|
|
|
return x, x.max(1)[0] # x, best_x |
|
|
|
|
|
|
|
def fitness(k): # mutation fitness |
|
|
|
_, best = metric(k) |
|
|
|
_, best = metric(torch.tensor(k, dtype=torch.float32)) |
|
|
|
return (best * (best > thr).float()).mean() # fitness |
|
|
|
|
|
|
|
def print_results(k): |
|
|
@@ -743,8 +743,8 @@ def kmean_anchors(path='./data/coco128.yaml', n=9, img_size=640, thr=4.0, gen=10 |
|
|
|
|
|
|
|
# Get label wh |
|
|
|
shapes = img_size * dataset.shapes / dataset.shapes.max(1, keepdims=True) |
|
|
|
wh = torch.tensor(np.concatenate([l[:, 3:5] * s for s, l in zip(shapes, dataset.labels)])).float() # wh |
|
|
|
wh = wh[(wh > 2.0).all(1)].numpy() # filter > 2 pixels |
|
|
|
wh = np.concatenate([l[:, 3:5] * s for s, l in zip(shapes, dataset.labels)]) # wh |
|
|
|
wh = wh[(wh > 2.0).all(1)] # filter > 2 pixels |
|
|
|
|
|
|
|
# Kmeans calculation |
|
|
|
from scipy.cluster.vq import kmeans |
|
|
@@ -752,7 +752,7 @@ def kmean_anchors(path='./data/coco128.yaml', n=9, img_size=640, thr=4.0, gen=10 |
|
|
|
s = wh.std(0) # sigmas for whitening |
|
|
|
k, dist = kmeans(wh / s, n, iter=30) # points, mean distance |
|
|
|
k *= s |
|
|
|
wh = torch.tensor(wh) |
|
|
|
wh = torch.tensor(wh, dtype=torch.float32) |
|
|
|
k = print_results(k) |
|
|
|
|
|
|
|
# Plot |
|
|
@@ -771,7 +771,7 @@ def kmean_anchors(path='./data/coco128.yaml', n=9, img_size=640, thr=4.0, gen=10 |
|
|
|
# Evolve |
|
|
|
npr = np.random |
|
|
|
f, sh, mp, s = fitness(k), k.shape, 0.9, 0.1 # fitness, generations, mutation prob, sigma |
|
|
|
for _ in tqdm(range(gen), desc='Evolving anchors with Genetic Algorithm:'): |
|
|
|
for _ in tqdm(range(gen), desc='Evolving anchors with Genetic Algorithm'): |
|
|
|
v = np.ones(sh) |
|
|
|
while (v == 1).all(): # mutate until a change occurs (prevent duplicates) |
|
|
|
v = ((npr.random(sh) < mp) * npr.random() * npr.randn(*sh) * s + 1).clip(0.3, 3.0) |