|
|
|
|
|
|
|
|
save_conf=opt.save_conf, |
|
|
save_conf=opt.save_conf, |
|
|
) |
|
|
) |
|
|
|
|
|
|
|
|
|
|
|
elif opt.task == 'speed': # speed benchmarks |
|
|
|
|
|
for w in opt.weights: |
|
|
|
|
|
test(opt.data, w, opt.batch_size, opt.img_size, 0.25, 0.45, save_json=False, plots=False) |
|
|
|
|
|
|
|
|
elif opt.task == 'study': # run over a range of settings and save/plot |
|
|
elif opt.task == 'study': # run over a range of settings and save/plot |
|
|
for weights in ['yolov5s.pt', 'yolov5m.pt', 'yolov5l.pt', 'yolov5x.pt']: |
|
|
|
|
|
f = 'study_%s_%s.txt' % (Path(opt.data).stem, Path(weights).stem) # filename to save to |
|
|
|
|
|
x = list(range(320, 800, 64)) # x axis |
|
|
|
|
|
|
|
|
x = list(range(256, 1536 + 128, 128)) # x axis (image sizes) |
|
|
|
|
|
for w in opt.weights: |
|
|
|
|
|
f = f'study_{Path(opt.data).stem}_{Path(w).stem}.txt' # filename to save to |
|
|
y = [] # y axis |
|
|
y = [] # y axis |
|
|
for i in x: # img-size |
|
|
for i in x: # img-size |
|
|
print('\nRunning %s point %s...' % (f, i)) |
|
|
|
|
|
r, _, t = test(opt.data, weights, opt.batch_size, i, opt.conf_thres, opt.iou_thres, opt.save_json, |
|
|
|
|
|
|
|
|
print(f'\nRunning {f} point {i}...') |
|
|
|
|
|
r, _, t = test(opt.data, w, opt.batch_size, i, opt.conf_thres, opt.iou_thres, opt.save_json, |
|
|
plots=False) |
|
|
plots=False) |
|
|
y.append(r + t) # results and times |
|
|
y.append(r + t) # results and times |
|
|
np.savetxt(f, y, fmt='%10.4g') # save |
|
|
np.savetxt(f, y, fmt='%10.4g') # save |
|
|
os.system('zip -r study.zip study_*.txt') |
|
|
os.system('zip -r study.zip study_*.txt') |
|
|
plot_study_txt(f, x) # plot |
|
|
|
|
|
|
|
|
plot_study_txt(x=x) # plot |