|
|
@@ -0,0 +1,55 @@ |
|
|
|
"""Exports a YOLOv5 *.pt model to *.onnx and *.torchscript formats |
|
|
|
|
|
|
|
Usage: |
|
|
|
$ export PYTHONPATH="$PWD" && python models/export.py --weights ./weights/yolov5s.pt --img 640 --batch 1 |
|
|
|
""" |
|
|
|
|
|
|
|
import argparse |
|
|
|
|
|
|
|
import onnx |
|
|
|
|
|
|
|
from models.common import * |
|
|
|
from utils import google_utils |
|
|
|
|
|
|
|
if __name__ == '__main__': |
|
|
|
parser = argparse.ArgumentParser() |
|
|
|
parser.add_argument('--weights', type=str, default='./yolov5s.pt', help='weights path') |
|
|
|
parser.add_argument('--img-size', nargs='+', type=int, default=[640, 640], help='image size') |
|
|
|
parser.add_argument('--batch-size', type=int, default=1, help='batch size') |
|
|
|
opt = parser.parse_args() |
|
|
|
opt.img_size *= 2 if len(opt.img_size) == 1 else 1 # expand |
|
|
|
print(opt) |
|
|
|
|
|
|
|
# Input |
|
|
|
img = torch.zeros((opt.batch_size, 3, *opt.img_size)) # image size, (1, 3, 320, 192) iDetection |
|
|
|
|
|
|
|
# Load PyTorch model |
|
|
|
google_utils.attempt_download(opt.weights) |
|
|
|
model = torch.load(opt.weights, map_location=torch.device('cpu'))['model'].float() |
|
|
|
model.eval() |
|
|
|
model.model[-1].export = True # set Detect() layer export=True |
|
|
|
_ = model(img) # dry run |
|
|
|
|
|
|
|
# Export to torchscript |
|
|
|
try: |
|
|
|
f = opt.weights.replace('.pt', '.torchscript') # filename |
|
|
|
ts = torch.jit.trace(model, img) |
|
|
|
ts.save(f) |
|
|
|
print('Torchscript export success, saved as %s' % f) |
|
|
|
except: |
|
|
|
print('Torchscript export failed.') |
|
|
|
|
|
|
|
# Export to ONNX |
|
|
|
try: |
|
|
|
f = opt.weights.replace('.pt', '.onnx') # filename |
|
|
|
model.fuse() # only for ONNX |
|
|
|
torch.onnx.export(model, img, f, verbose=False, opset_version=11, input_names=['images'], |
|
|
|
output_names=['output']) # output_names=['classes', 'boxes'] |
|
|
|
|
|
|
|
# Checks |
|
|
|
onnx_model = onnx.load(f) # load onnx model |
|
|
|
onnx.checker.check_model(onnx_model) # check onnx model |
|
|
|
print(onnx.helper.printable_graph(onnx_model.graph)) # print a human readable representation of the graph |
|
|
|
print('ONNX export success, saved as %s\nView with https://github.com/lutzroeder/netron' % f) |
|
|
|
except: |
|
|
|
print('ONNX export failed.') |