ソースを参照

Merge remote-tracking branch 'origin/master'

5.0
Glenn Jocher 4年前
コミット
bfd51f62f8
2個のファイルの変更55行の追加43行の削除
  1. +55
    -0
      models/export.py
  2. +0
    -43
      models/onnx_export.py

+ 55
- 0
models/export.py ファイルの表示

@@ -0,0 +1,55 @@
"""Exports a YOLOv5 *.pt model to *.onnx and *.torchscript formats

Usage:
$ export PYTHONPATH="$PWD" && python models/export.py --weights ./weights/yolov5s.pt --img 640 --batch 1
"""

import argparse

import onnx

from models.common import *
from utils import google_utils

if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--weights', type=str, default='./yolov5s.pt', help='weights path')
parser.add_argument('--img-size', nargs='+', type=int, default=[640, 640], help='image size')
parser.add_argument('--batch-size', type=int, default=1, help='batch size')
opt = parser.parse_args()
opt.img_size *= 2 if len(opt.img_size) == 1 else 1 # expand
print(opt)

# Input
img = torch.zeros((opt.batch_size, 3, *opt.img_size)) # image size, (1, 3, 320, 192) iDetection

# Load PyTorch model
google_utils.attempt_download(opt.weights)
model = torch.load(opt.weights, map_location=torch.device('cpu'))['model'].float()
model.eval()
model.model[-1].export = True # set Detect() layer export=True
_ = model(img) # dry run

# Export to torchscript
try:
f = opt.weights.replace('.pt', '.torchscript') # filename
ts = torch.jit.trace(model, img)
ts.save(f)
print('Torchscript export success, saved as %s' % f)
except:
print('Torchscript export failed.')

# Export to ONNX
try:
f = opt.weights.replace('.pt', '.onnx') # filename
model.fuse() # only for ONNX
torch.onnx.export(model, img, f, verbose=False, opset_version=11, input_names=['images'],
output_names=['output']) # output_names=['classes', 'boxes']

# Checks
onnx_model = onnx.load(f) # load onnx model
onnx.checker.check_model(onnx_model) # check onnx model
print(onnx.helper.printable_graph(onnx_model.graph)) # print a human readable representation of the graph
print('ONNX export success, saved as %s\nView with https://github.com/lutzroeder/netron' % f)
except:
print('ONNX export failed.')

+ 0
- 43
models/onnx_export.py ファイルの表示

@@ -1,43 +0,0 @@
"""Exports a pytorch *.pt model to *.onnx format

Usage:
$ export PYTHONPATH="$PWD" && python models/onnx_export.py --weights ./weights/yolov5s.pt --img 640 --batch 1
"""

import argparse

import onnx

from models.common import *
from utils import google_utils

if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--weights', type=str, default='./yolov5s.pt', help='weights path')
parser.add_argument('--img-size', nargs='+', type=int, default=[640, 640], help='image size')
parser.add_argument('--batch-size', type=int, default=1, help='batch size')
opt = parser.parse_args()
opt.img_size *= 2 if len(opt.img_size) == 1 else 1
print(opt)

# Parameters
f = opt.weights.replace('.pt', '.onnx') # onnx filename
img = torch.zeros((opt.batch_size, 3, *opt.img_size)) # image size, (1, 3, 320, 192) iDetection

# Load pytorch model
google_utils.attempt_download(opt.weights)
model = torch.load(opt.weights, map_location=torch.device('cpu'))['model'].float()
model.eval()
model.fuse()

# Export to onnx
model.model[-1].export = True # set Detect() layer export=True
_ = model(img) # dry run
torch.onnx.export(model, img, f, verbose=False, opset_version=11, input_names=['images'],
output_names=['output']) # output_names=['classes', 'boxes']

# Check onnx model
model = onnx.load(f) # load onnx model
onnx.checker.check_model(model) # check onnx model
print(onnx.helper.printable_graph(model.graph)) # print a human readable representation of the graph
print('Export complete. ONNX model saved to %s\nView with https://github.com/lutzroeder/netron' % f)

読み込み中…
キャンセル
保存