* Update inference default to multi_label=False * bug fix * Update plots.py * Update plots.py5.0
@@ -7,7 +7,7 @@ import numpy as np | |||
import requests | |||
import torch | |||
import torch.nn as nn | |||
from PIL import Image, ImageDraw | |||
from PIL import Image | |||
from utils.datasets import letterbox | |||
from utils.general import non_max_suppression, make_divisible, scale_coords, xyxy2xywh |
@@ -106,7 +106,7 @@ def test(data, | |||
with torch.no_grad(): | |||
# Run model | |||
t = time_synchronized() | |||
inf_out, train_out = model(img, augment=augment) # inference and training outputs | |||
out, train_out = model(img, augment=augment) # inference and training outputs | |||
t0 += time_synchronized() - t | |||
# Compute loss | |||
@@ -117,11 +117,11 @@ def test(data, | |||
targets[:, 2:] *= torch.Tensor([width, height, width, height]).to(device) # to pixels | |||
lb = [targets[targets[:, 0] == i, 1:] for i in range(nb)] if save_hybrid else [] # for autolabelling | |||
t = time_synchronized() | |||
output = non_max_suppression(inf_out, conf_thres=conf_thres, iou_thres=iou_thres, labels=lb) | |||
out = non_max_suppression(out, conf_thres=conf_thres, iou_thres=iou_thres, labels=lb, multi_label=True) | |||
t1 += time_synchronized() - t | |||
# Statistics per image | |||
for si, pred in enumerate(output): | |||
for si, pred in enumerate(out): | |||
labels = targets[targets[:, 0] == si, 1:] | |||
nl = len(labels) | |||
tcls = labels[:, 0].tolist() if nl else [] # target class | |||
@@ -209,7 +209,7 @@ def test(data, | |||
f = save_dir / f'test_batch{batch_i}_labels.jpg' # labels | |||
Thread(target=plot_images, args=(img, targets, paths, f, names), daemon=True).start() | |||
f = save_dir / f'test_batch{batch_i}_pred.jpg' # predictions | |||
Thread(target=plot_images, args=(img, output_to_target(output), paths, f, names), daemon=True).start() | |||
Thread(target=plot_images, args=(img, output_to_target(out), paths, f, names), daemon=True).start() | |||
# Compute statistics | |||
stats = [np.concatenate(x, 0) for x in zip(*stats)] # to numpy |
@@ -390,11 +390,12 @@ def wh_iou(wh1, wh2): | |||
return inter / (wh1.prod(2) + wh2.prod(2) - inter) # iou = inter / (area1 + area2 - inter) | |||
def non_max_suppression(prediction, conf_thres=0.25, iou_thres=0.45, classes=None, agnostic=False, labels=()): | |||
"""Performs Non-Maximum Suppression (NMS) on inference results | |||
def non_max_suppression(prediction, conf_thres=0.25, iou_thres=0.45, classes=None, agnostic=False, multi_label=False, | |||
labels=()): | |||
"""Runs Non-Maximum Suppression (NMS) on inference results | |||
Returns: | |||
detections with shape: nx6 (x1, y1, x2, y2, conf, cls) | |||
list of detections, on (n,6) tensor per image [xyxy, conf, cls] | |||
""" | |||
nc = prediction.shape[2] - 5 # number of classes | |||
@@ -406,7 +407,7 @@ def non_max_suppression(prediction, conf_thres=0.25, iou_thres=0.45, classes=Non | |||
max_nms = 30000 # maximum number of boxes into torchvision.ops.nms() | |||
time_limit = 10.0 # seconds to quit after | |||
redundant = True # require redundant detections | |||
multi_label = nc > 1 # multiple labels per box (adds 0.5ms/img) | |||
multi_label &= nc > 1 # multiple labels per box (adds 0.5ms/img) | |||
merge = False # use merge-NMS | |||
t = time.time() |
@@ -54,7 +54,7 @@ def butter_lowpass_filtfilt(data, cutoff=1500, fs=50000, order=5): | |||
return filtfilt(b, a, data) # forward-backward filter | |||
def plot_one_box(x, img, color=None, label=None, line_thickness=None): | |||
def plot_one_box(x, img, color=None, label=None, line_thickness=3): | |||
# Plots one bounding box on image img | |||
tl = line_thickness or round(0.002 * (img.shape[0] + img.shape[1]) / 2) + 1 # line/font thickness | |||
color = color or [random.randint(0, 255) for _ in range(3)] |