소스 검색

Update hubconf.py for unified loading (#3005)

modifyDataloader
Glenn Jocher GitHub 3 년 전
부모
커밋
c1a44ed9c5
No known key found for this signature in database GPG Key ID: 4AEE18F83AFDEB23
1개의 변경된 파일7개의 추가작업 그리고 27개의 파일을 삭제
  1. +7
    -27
      hubconf.py

+ 7
- 27
hubconf.py 파일 보기

@@ -18,7 +18,7 @@ dependencies = ['torch', 'yaml']
check_requirements(Path(__file__).parent / 'requirements.txt', exclude=('tensorboard', 'pycocotools', 'thop'))


def create(name, pretrained, channels, classes, autoshape, verbose):
def create(name, pretrained, channels=3, classes=80, autoshape=True, verbose=True):
"""Creates a specified YOLOv5 model

Arguments:
@@ -33,7 +33,7 @@ def create(name, pretrained, channels, classes, autoshape, verbose):
YOLOv5 pytorch model
"""
set_logging(verbose=verbose)
fname = f'{name}.pt' # checkpoint filename
fname = Path(name).with_suffix('.pt') # checkpoint filename
try:
if pretrained and channels == 3 and classes == 80:
model = attempt_load(fname, map_location=torch.device('cpu')) # download/load FP32 model
@@ -60,30 +60,9 @@ def create(name, pretrained, channels, classes, autoshape, verbose):
raise Exception(s) from e


def custom(path_or_model='path/to/model.pt', autoshape=True, verbose=True):
"""YOLOv5-custom model https://github.com/ultralytics/yolov5

Arguments (3 options):
path_or_model (str): 'path/to/model.pt'
path_or_model (dict): torch.load('path/to/model.pt')
path_or_model (nn.Module): torch.load('path/to/model.pt')['model']

Returns:
pytorch model
"""
set_logging(verbose=verbose)

model = torch.load(path_or_model) if isinstance(path_or_model, str) else path_or_model # load checkpoint
if isinstance(model, dict):
model = model['ema' if model.get('ema') else 'model'] # load model

hub_model = Model(model.yaml).to(next(model.parameters()).device) # create
hub_model.load_state_dict(model.float().state_dict()) # load state_dict
hub_model.names = model.names # class names
if autoshape:
hub_model = hub_model.autoshape() # for file/URI/PIL/cv2/np inputs and NMS
device = select_device('0' if torch.cuda.is_available() else 'cpu') # default to GPU if available
return hub_model.to(device)
def custom(path='path/to/model.pt', autoshape=True, verbose=True):
# YOLOv5 custom or local model
return create(path, autoshape, verbose)


def yolov5s(pretrained=True, channels=3, classes=80, autoshape=True, verbose=True):
@@ -127,7 +106,8 @@ def yolov5x6(pretrained=True, channels=3, classes=80, autoshape=True, verbose=Tr


if __name__ == '__main__':
model = create(name='yolov5s', pretrained=True, channels=3, classes=80, autoshape=True, verbose=True) # pretrained
model = create(name='weights/yolov5s.pt', pretrained=True, channels=3, classes=80, autoshape=True,
verbose=True) # pretrained
# model = custom(path_or_model='path/to/model.pt') # custom

# Verify inference

Loading…
취소
저장