Browse Source

Update hubconf.py for unified loading (#3005)

modifyDataloader
Glenn Jocher GitHub 3 years ago
parent
commit
c1a44ed9c5
No known key found for this signature in database GPG Key ID: 4AEE18F83AFDEB23
1 changed files with 7 additions and 27 deletions
  1. +7
    -27
      hubconf.py

+ 7
- 27
hubconf.py View File

check_requirements(Path(__file__).parent / 'requirements.txt', exclude=('tensorboard', 'pycocotools', 'thop')) check_requirements(Path(__file__).parent / 'requirements.txt', exclude=('tensorboard', 'pycocotools', 'thop'))




def create(name, pretrained, channels, classes, autoshape, verbose):
def create(name, pretrained, channels=3, classes=80, autoshape=True, verbose=True):
"""Creates a specified YOLOv5 model """Creates a specified YOLOv5 model


Arguments: Arguments:
YOLOv5 pytorch model YOLOv5 pytorch model
""" """
set_logging(verbose=verbose) set_logging(verbose=verbose)
fname = f'{name}.pt' # checkpoint filename
fname = Path(name).with_suffix('.pt') # checkpoint filename
try: try:
if pretrained and channels == 3 and classes == 80: if pretrained and channels == 3 and classes == 80:
model = attempt_load(fname, map_location=torch.device('cpu')) # download/load FP32 model model = attempt_load(fname, map_location=torch.device('cpu')) # download/load FP32 model
raise Exception(s) from e raise Exception(s) from e




def custom(path_or_model='path/to/model.pt', autoshape=True, verbose=True):
"""YOLOv5-custom model https://github.com/ultralytics/yolov5

Arguments (3 options):
path_or_model (str): 'path/to/model.pt'
path_or_model (dict): torch.load('path/to/model.pt')
path_or_model (nn.Module): torch.load('path/to/model.pt')['model']

Returns:
pytorch model
"""
set_logging(verbose=verbose)

model = torch.load(path_or_model) if isinstance(path_or_model, str) else path_or_model # load checkpoint
if isinstance(model, dict):
model = model['ema' if model.get('ema') else 'model'] # load model

hub_model = Model(model.yaml).to(next(model.parameters()).device) # create
hub_model.load_state_dict(model.float().state_dict()) # load state_dict
hub_model.names = model.names # class names
if autoshape:
hub_model = hub_model.autoshape() # for file/URI/PIL/cv2/np inputs and NMS
device = select_device('0' if torch.cuda.is_available() else 'cpu') # default to GPU if available
return hub_model.to(device)
def custom(path='path/to/model.pt', autoshape=True, verbose=True):
# YOLOv5 custom or local model
return create(path, autoshape, verbose)




def yolov5s(pretrained=True, channels=3, classes=80, autoshape=True, verbose=True): def yolov5s(pretrained=True, channels=3, classes=80, autoshape=True, verbose=True):




if __name__ == '__main__': if __name__ == '__main__':
model = create(name='yolov5s', pretrained=True, channels=3, classes=80, autoshape=True, verbose=True) # pretrained
model = create(name='weights/yolov5s.pt', pretrained=True, channels=3, classes=80, autoshape=True,
verbose=True) # pretrained
# model = custom(path_or_model='path/to/model.pt') # custom # model = custom(path_or_model='path/to/model.pt') # custom


# Verify inference # Verify inference

Loading…
Cancel
Save