|
|
|
|
|
|
|
|
check_requirements(Path(__file__).parent / 'requirements.txt', exclude=('tensorboard', 'pycocotools', 'thop')) |
|
|
check_requirements(Path(__file__).parent / 'requirements.txt', exclude=('tensorboard', 'pycocotools', 'thop')) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def create(name, pretrained, channels, classes, autoshape, verbose): |
|
|
|
|
|
|
|
|
def create(name, pretrained, channels=3, classes=80, autoshape=True, verbose=True): |
|
|
"""Creates a specified YOLOv5 model |
|
|
"""Creates a specified YOLOv5 model |
|
|
|
|
|
|
|
|
Arguments: |
|
|
Arguments: |
|
|
|
|
|
|
|
|
YOLOv5 pytorch model |
|
|
YOLOv5 pytorch model |
|
|
""" |
|
|
""" |
|
|
set_logging(verbose=verbose) |
|
|
set_logging(verbose=verbose) |
|
|
fname = f'{name}.pt' # checkpoint filename |
|
|
|
|
|
|
|
|
fname = Path(name).with_suffix('.pt') # checkpoint filename |
|
|
try: |
|
|
try: |
|
|
if pretrained and channels == 3 and classes == 80: |
|
|
if pretrained and channels == 3 and classes == 80: |
|
|
model = attempt_load(fname, map_location=torch.device('cpu')) # download/load FP32 model |
|
|
model = attempt_load(fname, map_location=torch.device('cpu')) # download/load FP32 model |
|
|
|
|
|
|
|
|
raise Exception(s) from e |
|
|
raise Exception(s) from e |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def custom(path_or_model='path/to/model.pt', autoshape=True, verbose=True): |
|
|
|
|
|
"""YOLOv5-custom model https://github.com/ultralytics/yolov5 |
|
|
|
|
|
|
|
|
|
|
|
Arguments (3 options): |
|
|
|
|
|
path_or_model (str): 'path/to/model.pt' |
|
|
|
|
|
path_or_model (dict): torch.load('path/to/model.pt') |
|
|
|
|
|
path_or_model (nn.Module): torch.load('path/to/model.pt')['model'] |
|
|
|
|
|
|
|
|
|
|
|
Returns: |
|
|
|
|
|
pytorch model |
|
|
|
|
|
""" |
|
|
|
|
|
set_logging(verbose=verbose) |
|
|
|
|
|
|
|
|
|
|
|
model = torch.load(path_or_model) if isinstance(path_or_model, str) else path_or_model # load checkpoint |
|
|
|
|
|
if isinstance(model, dict): |
|
|
|
|
|
model = model['ema' if model.get('ema') else 'model'] # load model |
|
|
|
|
|
|
|
|
|
|
|
hub_model = Model(model.yaml).to(next(model.parameters()).device) # create |
|
|
|
|
|
hub_model.load_state_dict(model.float().state_dict()) # load state_dict |
|
|
|
|
|
hub_model.names = model.names # class names |
|
|
|
|
|
if autoshape: |
|
|
|
|
|
hub_model = hub_model.autoshape() # for file/URI/PIL/cv2/np inputs and NMS |
|
|
|
|
|
device = select_device('0' if torch.cuda.is_available() else 'cpu') # default to GPU if available |
|
|
|
|
|
return hub_model.to(device) |
|
|
|
|
|
|
|
|
def custom(path='path/to/model.pt', autoshape=True, verbose=True): |
|
|
|
|
|
# YOLOv5 custom or local model |
|
|
|
|
|
return create(path, autoshape, verbose) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def yolov5s(pretrained=True, channels=3, classes=80, autoshape=True, verbose=True): |
|
|
def yolov5s(pretrained=True, channels=3, classes=80, autoshape=True, verbose=True): |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if __name__ == '__main__': |
|
|
if __name__ == '__main__': |
|
|
model = create(name='yolov5s', pretrained=True, channels=3, classes=80, autoshape=True, verbose=True) # pretrained |
|
|
|
|
|
|
|
|
model = create(name='weights/yolov5s.pt', pretrained=True, channels=3, classes=80, autoshape=True, |
|
|
|
|
|
verbose=True) # pretrained |
|
|
# model = custom(path_or_model='path/to/model.pt') # custom |
|
|
# model = custom(path_or_model='path/to/model.pt') # custom |
|
|
|
|
|
|
|
|
# Verify inference |
|
|
# Verify inference |