* Apple Metal Performance Shader (MPS) device support Following https://pytorch.org/blog/introducing-accelerated-pytorch-training-on-mac/ Should work with Apple M1 devices with PyTorch nightly installed with command `--device mps`. Usage examples: ```bash python train.py --device mps python detect.py --device mps python val.py --device mps ``` * Update device strategy to fix MPS issuemodifyDataloader
@@ -486,7 +486,7 @@ def run( | |||
if half: | |||
assert device.type != 'cpu' or coreml or xml, '--half only compatible with GPU export, i.e. use --device 0' | |||
assert not dynamic, '--half not compatible with --dynamic, i.e. use either --half or --dynamic but not both' | |||
model = attempt_load(weights, map_location=device, inplace=True, fuse=True) # load FP32 model | |||
model = attempt_load(weights, device=device, inplace=True, fuse=True) # load FP32 model | |||
nc, names = model.nc, model.names # number of classes, class names | |||
# Checks |
@@ -331,7 +331,7 @@ class DetectMultiBackend(nn.Module): | |||
names = yaml.safe_load(f)['names'] | |||
if pt: # PyTorch | |||
model = attempt_load(weights if isinstance(weights, list) else w, map_location=device) | |||
model = attempt_load(weights if isinstance(weights, list) else w, device=device) | |||
stride = max(int(model.stride.max()), 32) # model stride | |||
names = model.module.names if hasattr(model, 'module') else model.names # get class names | |||
model.half() if fp16 else model.float() |
@@ -71,14 +71,14 @@ class Ensemble(nn.ModuleList): | |||
return y, None # inference, train output | |||
def attempt_load(weights, map_location=None, inplace=True, fuse=True): | |||
def attempt_load(weights, device=None, inplace=True, fuse=True): | |||
from models.yolo import Detect, Model | |||
# Loads an ensemble of models weights=[a,b,c] or a single model weights=[a] or weights=a | |||
model = Ensemble() | |||
for w in weights if isinstance(weights, list) else [weights]: | |||
ckpt = torch.load(attempt_download(w), map_location=map_location) # load | |||
ckpt = (ckpt.get('ema') or ckpt['model']).float() # FP32 model | |||
ckpt = torch.load(attempt_download(w)) | |||
ckpt = (ckpt.get('ema') or ckpt['model']).to(device).float() # FP32 model | |||
model.append(ckpt.fuse().eval() if fuse else ckpt.eval()) # fused or un-fused model in eval mode | |||
# Compatibility updates |
@@ -536,7 +536,7 @@ def run( | |||
): | |||
# PyTorch model | |||
im = torch.zeros((batch_size, 3, *imgsz)) # BCHW image | |||
model = attempt_load(weights, map_location=torch.device('cpu'), inplace=True, fuse=False) | |||
model = attempt_load(weights, device=torch.device('cpu'), inplace=True, fuse=False) | |||
_ = model(im) # inference | |||
model.info() | |||
@@ -54,7 +54,8 @@ def select_device(device='', batch_size=0, newline=True): | |||
s = f'YOLOv5 🚀 {git_describe() or file_date()} Python-{platform.python_version()} torch-{torch.__version__} ' | |||
device = str(device).strip().lower().replace('cuda:', '').replace('none', '') # to string, 'cuda:0' to '0' | |||
cpu = device == 'cpu' | |||
if cpu: | |||
mps = device == 'mps' # Apple Metal Performance Shaders (MPS) | |||
if cpu or mps: | |||
os.environ['CUDA_VISIBLE_DEVICES'] = '-1' # force torch.cuda.is_available() = False | |||
elif device: # non-cpu device requested | |||
os.environ['CUDA_VISIBLE_DEVICES'] = device # set environment variable - must be before assert is_available() | |||
@@ -71,13 +72,15 @@ def select_device(device='', batch_size=0, newline=True): | |||
for i, d in enumerate(devices): | |||
p = torch.cuda.get_device_properties(i) | |||
s += f"{'' if i == 0 else space}CUDA:{d} ({p.name}, {p.total_memory / (1 << 20):.0f}MiB)\n" # bytes to MB | |||
elif mps: | |||
s += 'MPS\n' | |||
else: | |||
s += 'CPU\n' | |||
if not newline: | |||
s = s.rstrip() | |||
LOGGER.info(s.encode().decode('ascii', 'ignore') if platform.system() == 'Windows' else s) # emoji-safe | |||
return torch.device('cuda:0' if cuda else 'cpu') | |||
return torch.device('cuda:0' if cuda else 'mps' if mps else 'cpu') | |||
def time_sync(): |