Browse Source

Improved `dataset_stats()` YAML checks (#8125)

* Update dataloaders.py

* Update dataloaders.py

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
modifyDataloader
Glenn Jocher GitHub 2 years ago
parent
commit
c23a441c9d
No known key found for this signature in database GPG Key ID: 4AEE18F83AFDEB23
1 changed files with 23 additions and 12 deletions
  1. +23
    -12
      utils/dataloaders.py

+ 23
- 12
utils/dataloaders.py View File

@@ -859,7 +859,7 @@ def flatten_recursive(path=DATASETS_DIR / 'coco128'):
shutil.copyfile(file, new_path / Path(file).name)


def extract_boxes(path=DATASETS_DIR / 'coco128'): # from utils.datasets import *; extract_boxes()
def extract_boxes(path=DATASETS_DIR / 'coco128'): # from utils.dataloaders import *; extract_boxes()
# Convert detection dataset into classification dataset, with one directory per class
path = Path(path) # images dir
shutil.rmtree(path / 'classifier') if (path / 'classifier').is_dir() else None # remove existing
@@ -895,7 +895,7 @@ def extract_boxes(path=DATASETS_DIR / 'coco128'): # from utils.datasets import

def autosplit(path=DATASETS_DIR / 'coco128/images', weights=(0.9, 0.1, 0.0), annotated_only=False):
""" Autosplit a dataset into train/val/test splits and save path/autosplit_*.txt files
Usage: from utils.datasets import *; autosplit()
Usage: from utils.dataloaders import *; autosplit()
Arguments
path: Path to images directory
weights: Train, val, test weights (list, tuple)
@@ -972,29 +972,40 @@ def verify_image_label(args):
def dataset_stats(path='coco128.yaml', autodownload=False, verbose=False, profile=False, hub=False):
""" Return dataset statistics dictionary with images and instances counts per split per class
To run in parent directory: export PYTHONPATH="$PWD/yolov5"
Usage1: from utils.datasets import *; dataset_stats('coco128.yaml', autodownload=True)
Usage2: from utils.datasets import *; dataset_stats('path/to/coco128_with_yaml.zip')
Usage1: from utils.dataloaders import *; dataset_stats('coco128.yaml', autodownload=True)
Usage2: from utils.dataloaders import *; dataset_stats('path/to/coco128_with_yaml.zip')
Arguments
path: Path to data.yaml or data.zip (with data.yaml inside data.zip)
autodownload: Attempt to download dataset if not found locally
verbose: Print stats dictionary
"""

def round_labels(labels):
def _round_labels(labels):
# Update labels to integer class and 6 decimal place floats
return [[int(c), *(round(x, 4) for x in points)] for c, *points in labels]

def unzip(path):
# Unzip data.zip TODO: CONSTRAINT: path/to/abc.zip MUST unzip to 'path/to/abc/'
def _find_yaml(dir):
# Return data.yaml file
files = list(dir.glob('*.yaml')) or list(dir.rglob('*.yaml')) # try root level first and then recursive
assert files, f'No *.yaml file found in {dir}'
if len(files) > 1:
files = [f for f in files if f.stem == dir.stem] # prefer *.yaml files that match dir name
assert files, f'Multiple *.yaml files found in {dir}, only 1 *.yaml file allowed'
assert len(files) == 1, f'Multiple *.yaml files found: {files}, only 1 *.yaml file allowed in {dir}'
return files[0]

def _unzip(path):
# Unzip data.zip
if str(path).endswith('.zip'): # path is data.zip
assert Path(path).is_file(), f'Error unzipping {path}, file not found'
ZipFile(path).extractall(path=path.parent) # unzip
dir = path.with_suffix('') # dataset directory == zip name
return True, str(dir), next(dir.rglob('*.yaml')) # zipped, data_dir, yaml_path
assert dir.is_dir(), f'Error unzipping {path}, {dir} not found. path/to/abc.zip MUST unzip to path/to/abc/'
return True, str(dir), _find_yaml(dir) # zipped, data_dir, yaml_path
else: # path is data.yaml
return False, None, path

def hub_ops(f, max_dim=1920):
def _hub_ops(f, max_dim=1920):
# HUB ops for 1 image 'f': resize and save at reduced quality in /dataset-hub for web/app viewing
f_new = im_dir / Path(f).name # dataset-hub image filename
try: # use PIL
@@ -1012,7 +1023,7 @@ def dataset_stats(path='coco128.yaml', autodownload=False, verbose=False, profil
im = cv2.resize(im, (int(im_width * r), int(im_height * r)), interpolation=cv2.INTER_AREA)
cv2.imwrite(str(f_new), im)

zipped, data_dir, yaml_path = unzip(Path(path))
zipped, data_dir, yaml_path = _unzip(Path(path))
with open(check_yaml(yaml_path), errors='ignore') as f:
data = yaml.safe_load(f) # data dict
if zipped:
@@ -1038,12 +1049,12 @@ def dataset_stats(path='coco128.yaml', autodownload=False, verbose=False, profil
'unlabelled': int(np.all(x == 0, 1).sum()),
'per_class': (x > 0).sum(0).tolist()},
'labels': [{
str(Path(k).name): round_labels(v.tolist())} for k, v in zip(dataset.im_files, dataset.labels)]}
str(Path(k).name): _round_labels(v.tolist())} for k, v in zip(dataset.im_files, dataset.labels)]}

if hub:
im_dir = hub_dir / 'images'
im_dir.mkdir(parents=True, exist_ok=True)
for _ in tqdm(ThreadPool(NUM_THREADS).imap(hub_ops, dataset.im_files), total=dataset.n, desc='HUB Ops'):
for _ in tqdm(ThreadPool(NUM_THREADS).imap(_hub_ops, dataset.im_files), total=dataset.n, desc='HUB Ops'):
pass

# Profile

Loading…
Cancel
Save