|
|
@@ -18,8 +18,7 @@ def test(data, |
|
|
|
verbose=False, |
|
|
|
model=None, |
|
|
|
dataloader=None, |
|
|
|
fast=False, |
|
|
|
save_dir='.', |
|
|
|
save_dir='', |
|
|
|
merge=False): |
|
|
|
|
|
|
|
# Initialize/load model and set device |
|
|
@@ -29,7 +28,7 @@ def test(data, |
|
|
|
device = torch_utils.select_device(opt.device, batch_size=batch_size) |
|
|
|
|
|
|
|
# Remove previous |
|
|
|
for f in glob.glob(f'{save_dir}/test_batch*.jpg'): |
|
|
|
for f in glob.glob(str(Path(save_dir) / 'test_batch*.jpg')): |
|
|
|
os.remove(f) |
|
|
|
|
|
|
|
# Load model |
|
|
@@ -163,10 +162,11 @@ def test(data, |
|
|
|
|
|
|
|
# Plot images |
|
|
|
if batch_i < 1: |
|
|
|
f = os.path.join(save_dir, 'test_batch%g_gt.jpg' % batch_i) # filename |
|
|
|
plot_images(img, targets, paths, f, names) # ground truth |
|
|
|
f = os.path.join(save_dir,'test_batch%g_pred.jpg' % batch_i) |
|
|
|
plot_images(img, output_to_target(output, width, height), paths, f, names) # predictions |
|
|
|
|
|
|
|
f = Path(save_dir) / ('test_batch%g_gt.jpg' % batch_i) # filename |
|
|
|
plot_images(img, targets, paths, str(f), names) # ground truth |
|
|
|
f = Path(save_dir) / ('test_batch%g_pred.jpg' % batch_i) |
|
|
|
plot_images(img, output_to_target(output, width, height), paths, str(f), names) # predictions |
|
|
|
|
|
|
|
# Compute statistics |
|
|
|
stats = [np.concatenate(x, 0) for x in zip(*stats)] # to numpy |