Procházet zdrojové kódy

Improved non-latin `Annotator()` plotting (#7488)

* Improved non-latin labels Annotator plotting

May resolve https://github.com/ultralytics/yolov5/issues/7460

* Update train.py

* Update train.py

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* add progress arg

Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
modifyDataloader
Glenn Jocher GitHub před 2 roky
rodič
revize
c9042dc2ad
V databázi nebyl nalezen žádný známý klíč pro tento podpis ID GPG klíče: 4AEE18F83AFDEB23
3 změnil soubory, kde provedl 11 přidání a 8 odebrání
  1. +5
    -3
      train.py
  2. +2
    -2
      utils/general.py
  3. +4
    -3
      utils/plots.py

+ 5
- 3
train.py Zobrazit soubor

@@ -48,13 +48,13 @@ from utils.datasets import create_dataloader
from utils.downloads import attempt_download
from utils.general import (LOGGER, check_dataset, check_file, check_git_status, check_img_size, check_requirements,
check_suffix, check_yaml, colorstr, get_latest_run, increment_path, init_seeds,
intersect_dicts, labels_to_class_weights, labels_to_image_weights, methods, one_cycle,
print_args, print_mutation, strip_optimizer)
intersect_dicts, is_ascii, labels_to_class_weights, labels_to_image_weights, methods,
one_cycle, print_args, print_mutation, strip_optimizer)
from utils.loggers import Loggers
from utils.loggers.wandb.wandb_utils import check_wandb_resume
from utils.loss import ComputeLoss
from utils.metrics import fitness
from utils.plots import plot_evolve, plot_labels
from utils.plots import check_font, plot_evolve, plot_labels
from utils.torch_utils import EarlyStopping, ModelEMA, de_parallel, select_device, torch_distributed_zero_first

LOCAL_RANK = int(os.getenv('LOCAL_RANK', -1)) # https://pytorch.org/docs/stable/elastic/run.html
@@ -105,6 +105,8 @@ def train(hyp, opt, device, callbacks): # hyp is path/to/hyp.yaml or hyp dictio
init_seeds(1 + RANK)
with torch_distributed_zero_first(LOCAL_RANK):
data_dict = data_dict or check_dataset(data) # check if None
if not is_ascii(data_dict['names']): # non-latin labels, i.e. asian, arabic, cyrillic
check_font('Arial.Unicode.ttf', progress=True)
train_path, val_path = data_dict['train'], data_dict['val']
nc = 1 if single_cls else int(data_dict['nc']) # number of classes
names = ['item'] if single_cls and len(data_dict['names']) != 1 else data_dict['names'] # class names

+ 2
- 2
utils/general.py Zobrazit soubor

@@ -424,13 +424,13 @@ def check_file(file, suffix=''):
return files[0] # return file


def check_font(font=FONT):
def check_font(font=FONT, progress=False):
# Download font to CONFIG_DIR if necessary
font = Path(font)
if not font.exists() and not (CONFIG_DIR / font.name).exists():
url = "https://ultralytics.com/assets/" + font.name
LOGGER.info(f'Downloading {url} to {CONFIG_DIR / font.name}...')
torch.hub.download_url_to_file(url, str(font), progress=False)
torch.hub.download_url_to_file(url, str(font), progress=progress)


def check_dataset(data, autodownload=True):

+ 4
- 3
utils/plots.py Zobrazit soubor

@@ -19,7 +19,7 @@ import torch
from PIL import Image, ImageDraw, ImageFont

from utils.general import (CONFIG_DIR, FONT, LOGGER, Timeout, check_font, check_requirements, clip_coords,
increment_path, is_ascii, is_chinese, try_except, xywh2xyxy, xyxy2xywh)
increment_path, is_ascii, try_except, xywh2xyxy, xyxy2xywh)
from utils.metrics import fitness

# Settings
@@ -72,11 +72,12 @@ class Annotator:
# YOLOv5 Annotator for train/val mosaics and jpgs and detect/hub inference annotations
def __init__(self, im, line_width=None, font_size=None, font='Arial.ttf', pil=False, example='abc'):
assert im.data.contiguous, 'Image not contiguous. Apply np.ascontiguousarray(im) to Annotator() input images.'
self.pil = pil or not is_ascii(example) or is_chinese(example)
non_ascii = not is_ascii(example) # non-latin labels, i.e. asian, arabic, cyrillic
self.pil = pil or non_ascii
if self.pil: # use PIL
self.im = im if isinstance(im, Image.Image) else Image.fromarray(im)
self.draw = ImageDraw.Draw(self.im)
self.font = check_pil_font(font='Arial.Unicode.ttf' if is_chinese(example) else font,
self.font = check_pil_font(font='Arial.Unicode.ttf' if non_ascii else font,
size=font_size or max(round(sum(self.im.size) / 2 * 0.035), 12))
else: # use cv2
self.im = im

Načítá se…
Zrušit
Uložit